Technical Physics Letters

, Volume 39, Issue 5, pp 463–465 | Cite as

Formation of microtubes in CdI2 crystals doped with BiI3

  • I. M. Bolesta
  • I. N. RovetskyjEmail author
  • I. D. Karbovnyk
  • M. V. Partyka


The formation of microtubes (MTs) with rectangular cross section in the volume of CdI2 layered crystals doped with Bi3+ trivalent impurity ions has been observed for the first time by scanning electron microscopy. The MTs grow predominantly in pores that appear in the volume of CdI2-BiI3 crystals as a result of a difference in the valence of host Cd2+ ions and guest Bi3+ ions substituted into regular crystal lattice sites. The formation of MT structures is related to the rolling of I-Cd-I trilayers containing impurity ions, which takes place as a result of the presence of uncompensated charges at the edges. Deviation of the MT cross section from circular is explained by nonuniformity of the elastic properties of I-Cd-I trilayers with Bi impurity, which is related to the appearance of vacancies in the cation subsystem upon replacement of Cd2+ ions by Bi3+ ions.


Fullerene Technical Physic Letter Cleavage Surface Layered Sulfide Macroporous Silicon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Tenne, L. Matfulis, M. Genut, and G. Hodes, Nature 360, 444 (1992).ADSCrossRefGoogle Scholar
  2. 2.
    R. Tenne, Adv. Mater. 7, 965 (1995).CrossRefGoogle Scholar
  3. 3.
    R. Tenne and C. N. R. Rao, Philos. Trans. R. Soc. London 362, 2099 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    R. Tenne and A. Zettl, Top. Appl. Phys. 80, 81 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    Y. R. Hacohen, E. Grunbaum, R. Tenne, J. Sloan, and J. L. Hutchison, Nature 395, 336 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    R. Kreizman, S. Y. Hong, R. Popovitz-Biro, A. A. Yaron, G. Tobias, B. Ballesteros, B. G. Davis, M. L. H. Grenn, and R. Tenne, Angew. Chem. Int. Ed. 48, 1230 (2009).CrossRefGoogle Scholar
  7. 7.
    J. Zeng, C. Liu, J. Huang, X. Wang, S. Zhang, G. Li, and J. Hou, Nano Lett. 8, 1318 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    C. Ritchie, G. J. T. Cooper, Y. Song, C. Streb, H. Yin, A. D. C. Parenty, D. A. MacLaren, and L. Cronin, Nature Chem. 1, 47 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    E. V. Astrova, T. N. Borovinskaya, T. S. Perova, and M. V. Zamoryanskaya, Semiconductors 38, 1084 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    S. Kondo, A. Kato, and T. Saito, Phys. Status Solidi A 182, 661 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    S. Kondo, T. Suzuki, and T. Saito, J. Phys. D: Appl. Phys. 31, 2733 (1998).ADSCrossRefGoogle Scholar
  12. 12.
    A. I. Dmitriev, V. V. Vishnjak, G. V. Lashkarev, V. L. Karbovskii, Z. D. Kovalyuk, and A. P. Bakhtinov, Phys. Solid State 53, 622 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    R. Singh, S. B. Samanta, A. V. Narlikar, and G. C. Trigunayat, Surf. Sci. 422, 188 (1999).CrossRefGoogle Scholar
  14. 14.
    A. P. Bakhtinov, V. N. Vodop’yanov, E. I. Slyn’ko, et al., Tech. Phys. Lett. 33, 86 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • I. M. Bolesta
    • 1
    • 2
  • I. N. Rovetskyj
    • 1
    • 2
    Email author
  • I. D. Karbovnyk
    • 1
    • 2
  • M. V. Partyka
    • 1
    • 2
  1. 1.Ivan Franko National University of LvivLvivUkraine
  2. 2.Fractal Scientific and Educational CenterIvan Franko National University of LvivLvivUkraine

Personalised recommendations