Skip to main content
Log in

Determining instability modes in a gas flame

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The efficiency of modern methods of experimental hydromechanics for determining local and global instability modes in turbulent flows is demonstrated. The particle image velocimetry technique and the method of dynamic mode decomposition for the analysis of instantaneous flow velocity fields were used to study non-swirling and strongly swirling jet flows of rich propane-air mixture issuing into atmospheric air and burning as a suspended flame. Modes induced by the Kelvin-Helmholtz instability and vortex core precession are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry (Cambridge University Press, Cambridge, 1996).

    Book  MATH  Google Scholar 

  2. B. Hof, J. Westerweel, T. M. Schneider, and B. Eckhardt, Nature 443, 59 (2006).

    Article  ADS  Google Scholar 

  3. P. J. Schmid, J. Fluid Mech. 656, 5 (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. S. Boyd, EE263 (Lecture Course): Introduction to Linear Dynamical Systems (Information Systems Laboratory, Department of Electrical Engineering, Stanford University).

  5. I. Mezic, S. Loire, V. A. Fonoberov, and P. Hogan, Science 330, 486 (2010).

    Article  ADS  Google Scholar 

  6. G. Broze and F. Hussain, J. Fluid Mech. 311, 37 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  7. K. Oberleithner, M. Sieber, C. N. Nayeri, et al., J. Fluid Mech. 679, 383 (2011).

    Article  MATH  Google Scholar 

  8. A. Gupta, D. Lilley, and N. Syred, Swirl Flows (Abacus Press, Kent, UK, 1984).

    Google Scholar 

  9. S. V. Alekseenko, V. M. Dulin, Yu. S. Kozorezov, et al., Flow Turbul. Combust. 87, 569 (2011).

    Article  MATH  Google Scholar 

  10. D. M. Markovich and M. P. Tokarev, Vychisl. Met. Program. 9, 311 (2008).

    Google Scholar 

  11. M. P. Tokarev, D. M. Markovich, and A. V. Bil’skii, Vychisl. Tekhnol. 2, 1 (2007).

    Google Scholar 

  12. B. M. Cetegen and Y. Dong, Exp. Fluids 28, 546 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Markovich.

Additional information

Original Russian Text © S.S. Abdurakipov, V.M. Dulin, D.M. Markovich, K. Hanjalić, 2013, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2013, Vol. 39, No. 6, pp. 79–86.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdurakipov, S.S., Dulin, V.M., Markovich, D.M. et al. Determining instability modes in a gas flame. Tech. Phys. Lett. 39, 308–311 (2013). https://doi.org/10.1134/S1063785013030164

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785013030164

Keywords

Navigation