Skip to main content
Log in

Gaps in the spectrum of epitaxial graphene formed on silicon carbide polytypes

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Silicon carbide NH-SiC polytypes with N = 2, 4, 6, and 8 are considered as substrates for the epitaxial formation of graphene. The density of states for the substrates is described using the Haldane-Anderson model. It is shown that this model always leads to the appearance of two gaps in the graphene spectrum, which are adjacent to the valence and conduction bands of the substrate. The gap widths are determined by the ratio of the energy of interatomic interaction in the free-standing graphene sheet and the energy of graphene-substrate interaction. If this ratio is very small, the gap widths may increase so as to jointly cover almost the entire bandgap of the substrate; on the contrary, if this ratio is extremely large, both gaps exhibit narrowing and become negligibly small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  2. D. R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, and V. Yu, arXiv: 1110.6557.

  3. J. Haas, W. A. de Heer, and E. H. Conrad, J. Phys. C: Condens. Matter 20, 323202 (2008).

    Article  Google Scholar 

  4. W. A. de Heer, C. Berger, X. Wu, M. Sprinkle, Y. Hu, M. Ruan, J. A. Stroscio, P. N. Eirst, R. Haddon, B. Piot, C. Faugeras, M. Potemski, and J.-S. Moon, J. Phys. D: Appl. Phys. 43, 374007 (2010).

    Article  Google Scholar 

  5. Th. Seyller, A. Botswick, K. V. Emtsev, K. Horn, L. Ley, J. L. McChestney, T. Ohta, J. D. Riley, E. Rotenberg, and F. Speck, Phys. Status Solidi (b) 245, 1436 (2008).

    Article  ADS  Google Scholar 

  6. S. Yu. Davydov, Semiconductors 47, 95 (2013).

    Article  ADS  Google Scholar 

  7. F. D. M. Haldane and P. W. Anderson, Phys. Rev. B 13, 2553 (1976).

    Article  ADS  Google Scholar 

  8. C. Persson and U. Lindefelt, Mater. Sci. Forum, 264–268, 275 (1998).

    Article  Google Scholar 

  9. Yu. Goldberg, M. T. Levinshtein, and S. L. Rumyantsev, Properties of Advanced Semiconductor Materials: GaN, AlN, BN, SiGe, Ed. by M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur (Wiley, New York, 2001), pp. 93–148.

  10. S. Yu. Davydov, Semiconductors 41, 696 (2007).

    Article  ADS  Google Scholar 

  11. A. Mattausch and O. Pankratov, Phys. Rev. Lett. 99, 076802 (2007).

    Article  ADS  Google Scholar 

  12. Th. Jayasekera, S. Xu, K. W. Kim, and M. B. Nardelli, Phys. Rev. B 84, 035442 (2011).

    Article  ADS  Google Scholar 

  13. L. Vitali, C. Riedl, R. Ohmann, I. Brihuega, U. Starke, and K. Kern, Surf. Sci. 602, L127 (2008).

    Article  ADS  Google Scholar 

  14. O. Pankratov, S. Hensel, and M. Bocksstedte, arXiv: 1009.2185.

  15. S. Goler, C. Coletti, V. Pellegrini, K. V. Emtsev, U. Starke, F. Beltram, and S. Heun, arXiv: 1111.4918.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Davydov.

Additional information

Original Russian Text © S.Yu. Davydov, 2013, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2013, Vol. 39, No. 2, pp. 7–14.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davydov, S.Y. Gaps in the spectrum of epitaxial graphene formed on silicon carbide polytypes. Tech. Phys. Lett. 39, 101–104 (2013). https://doi.org/10.1134/S1063785013010343

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785013010343

Keywords

Navigation