Advertisement

Technical Physics Letters

, Volume 39, Issue 1, pp 130–133 | Cite as

The effect of ion energy on the surface morphology of platinum film under high-frequency ion plasma sputtering

  • I. I. AmirovEmail author
  • V. V. Naumov
  • M. O. Izyumov
  • R. S. Selyukov
Article

Abstract

The effect of ion energy (E i = 45–220 eV) on the sputter deposition rate and surface morphology of polycrystalline platinum films processed in high-density argon plasma of low-pressure (P = 0.08 Pa) RF induction discharge has been studied. The sputtering yield of Pt has been determined as a function of the ion energy. Analysis of the data of scanning tunneling microscopy showed a large difference between the surface profiles of samples treated at minimum and maximum ion energies in the range studied. The mechanism of Pt surface morphology modification by ion plasma sputtering is discussed.

Keywords

Scanning Tunneling Microscopy Technical Physic Letter PbTe PbSe Scanning Tunneling Microscopy Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Bruce, B. Scrosati, J.-M. Tarasconi, and W. van Scholkwijk, Nature Mater. 4, 366 (2005).ADSGoogle Scholar
  2. 2.
    A. Caillard, C. Charles, R. Boswell, and P. Brault, Nanotecnology 18, 305603 (2007).CrossRefGoogle Scholar
  3. 3.
    B. Wickman, H. Fredriksson, S. Gustafsson, E. Olsson, and B. Kasemo, Nanotechnology 22, 345302 (2011).CrossRefGoogle Scholar
  4. 4.
    M. S. Bharathi, H. Ramanarayan, and Y. W. Zhang, Appl. Phys. Lett. 99, 083103 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    S. Majumder, D. Paramanik, V. Solanki, B. P. Bag, and S. Varma, Appl. Phys. Lett. 98, 053105 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    S. P. Zimin, I. I. Amirov, E. S. Gorlachev, and H. Zogg, J. Phys. D: Appl. Phys 42, 165205 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    J. J. Lin, M. V. Roshan, Z. Y. Pan, R. Verma, P. Lee, S. V. Springham, T. L. Tan, and R. S. Rawat, J. Phys. D: Appl. Phys 41, 135213 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    S. P. Zimin, E. S. Gorlachev, and I. I. Amirov, Semicond. Sci. Technol. 26, 055018 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    M. J. Cooke and G. Hassall, Plasma Sources Sci. Technol. 11, A74 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    I. Horcas, R. Fernandez, J. M. Gomes-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, Rev. Sci. Instrum. 78, 013705 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    K. Ikuse, S. Yoshimura, K. Hine, M. Kiuchi, and S. Hamaguchi, J. Phys. D: Appl. Phys 42, 135203 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    P. Sigmund, Phys. Rev. 184, 384 (1969).ADSCrossRefGoogle Scholar
  13. 13.
    E. Kawamura, V. Vahedi, M. A. Lieberman, C. K. Birdsall, Plasma Sources Sci. Technol. 8, R45 (1999).ADSCrossRefGoogle Scholar
  14. 14.
    L. B. Begrambekov, Itogi Nauki Tekhn., Ser. Puchki Zaryazh. Chastits (VINITI) 7, 4 (1993).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • I. I. Amirov
    • 1
    Email author
  • V. V. Naumov
    • 1
  • M. O. Izyumov
    • 1
  • R. S. Selyukov
    • 1
  1. 1.Institute of Physics and Technology (Yaroslavl Branch)Russian Academy of SciencesYaroslavlRussia

Personalised recommendations