Skip to main content
Log in

Numerical simulation of spatially nonuniform switching in silicon avalanche sharpening diodes

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The process of spatially nonuniform switching in high-voltage silicon diodes operating in the delayed avalanche regime has been numerically simulated. The dependence of the transient process on the ratio between the total diode cross-section area and the area of the region where the switching takes place has been studied. The switching time (60–70 ps) and qualitative form of the transient characteristic agree with the available experimental data. It is established that a rapid drop of the diode voltage begins after the ionization front has traveled over most of the base and then continues due to secondary avalanche breakdown of the base filled with free carriers. Thus the time of switching to the conducting state exhibits no direct correlation with the velocity of ionization front propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Grekhov and A. F. Kardo-Sysoev, Sov. Tech. Phys. Lett. 5, 395 (1979).

    Google Scholar 

  2. D. Benzel and M. Pocha, Rev. Sci. Instr. 56, 1456 (1985).

    Article  ADS  Google Scholar 

  3. Zh. I. Alferov, I. V. Grekhov, V. M. Efanov, A. F. Kardo-Sysoev, V. I. Korol’kov, and M. N. Stepanova, Sov. Tech. Phys. Lett. 13, 454 (1987).

    Google Scholar 

  4. A. F. Kardo-Sysoev, New Power Semiconductor Devices for Generation of Nanoand Subnanosecond Pulses, in Ultra-Wideband Radar Technology, Ed. by J. D. Taylor (CRS Press, Boca Raton, 2001).

    Google Scholar 

  5. I. V. Grekhov, IEEE Trans. Plasma Sci. 38, 1118 (2010).

    Article  ADS  Google Scholar 

  6. R. J. Focia, E. Schamiloghu, C. B. Flederman, F. J. Agee, and J. Gaudet, IEEE Trans. Plasma Sci. 25, 138 (1997).

    Article  ADS  Google Scholar 

  7. Yu. D. Bilenko, M. E. Levinshtein, M. V. Popova, and V. S. Yuferev, Sov. Phys. Semicond. 17, 1156 (1983).

    Google Scholar 

  8. A. F. Kardo-Sysoev and M. V. Popova, Semiconductors 30, 431 (1996).

    ADS  Google Scholar 

  9. H. Jalali, R. Joshi, and J. Gaudet, IEEE Trans. Electron Dev. 45, 1761 (1998).

    Article  ADS  Google Scholar 

  10. P. Rodin, U. Ebert, W. Hundsdorfer, and I. V. Grekhov, J. Appl. Phys. 92, 1971 (2002).

    Article  ADS  Google Scholar 

  11. I. V. Grekhov and P. B. Rodin, Tech. Phys. Lett. 37, 849 (2011).

    Article  ADS  Google Scholar 

  12. P. Rodin, A. Rodina, and I. Grekhov, J. Appl. Phys. 98, 094506 (2005).

    Article  ADS  Google Scholar 

  13. E. V. Astrova, V. B. Voronkov, V. A. Kozlov, and A. A. Lebedev, Semicond. Sci. Technol. 13, 488 (1998).

    Article  ADS  Google Scholar 

  14. A. Minarsky and P. Rodin, Solid-State Electron. 41, 813 (1997).

    Article  ADS  Google Scholar 

  15. S. N. Vainshtein, Yu. V. Zhilyaev, and M. E. Levinshtein, Sov. Tech. Phys. Lett. 14, 664 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Rodin.

Additional information

Original Russian Text © P.B. Rodin, A.M. Minarsky, I.V. Grekhov, 2012, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2012, Vol. 38, No. 11, pp. 78–87.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodin, P.B., Minarsky, A.M. & Grekhov, I.V. Numerical simulation of spatially nonuniform switching in silicon avalanche sharpening diodes. Tech. Phys. Lett. 38, 535–539 (2012). https://doi.org/10.1134/S1063785012060144

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785012060144

Keywords

Navigation