Advertisement

Technical Physics Letters

, Volume 38, Issue 4, pp 372–374 | Cite as

Formation of triple shock configurations with negative reflection angle in steady flows

  • L. G. Gvozdeva
  • S. A. Gavrenkov
Article

Abstract

Triple configurations of shock waves with negative reflection angles are considered. These configurations have been observed in quasi-steady cases of shock wave reflection from a planar wedge in real gases, while in steady cases three-shock configurations are only known to occur with positive reflection angles. Boundaries for the appearance of a three-shock configuration with a negative reflection angle in steady cases are analytically determined as dependent on the initial Mach number of the flow, angle of incidence, and adiabatic index. The formation of a three-shock configuration with a negative reflection angle in a steady flow must lead to a change in the character of the wave pattern, and under certain conditions it can lead to instability.

Keywords

Shock Wave Mach Number Triple Point Adiabatic Index Reflection Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. G. Chernyi, Gasdynamics (Fizmatlit, Moscow, 1988), p. 424 [in Russian].Google Scholar
  2. 2.
    L.D. Landau and E.M. Lifshitz, Fluid Mechanics, 2nd ed. (Butterworth-Heineman, Oxford, 1987).zbMATHGoogle Scholar
  3. 3.
    R. Courant and K. O. Friedrichs, Supersonic Flows and Shock Waves (Interscience, New York, 1948).Google Scholar
  4. 4.
    T. V. Bazhenova, L. G. Gvozdeva, Y. S. Lobastov, I. M. Naboko, R. G. Nemkov, and O. A. Predvoditeleva, Shock Waves in Real Gases (Tech. Rep. TT-F-58, NASA Technical Translation, 1969).Google Scholar
  5. 5.
    T. V. Bazhenova and L. G. Gvozdeva, Unsteady Interaction of Shock Waves (Nauka, Moscow, 1977) [in Russian].Google Scholar
  6. 6.
    T. V. Bazhenova, L. G. Gvozdeva, and M. A. Nettleton, Prog. Aerospace Sci. 21, 249 (1984).ADSCrossRefGoogle Scholar
  7. 7.
    L. G. Gvozdeva and O. A. Predvoditeleva, Sov. Phys. Dokl. 10, 654 (1966).ADSGoogle Scholar
  8. 8.
    T. Iku, K. Matsuo, T. Aoki, and N. Kondoh, Bull. Jpn. Soc. Mech. Eng. 25(208), 1513 1982).CrossRefGoogle Scholar
  9. 9.
    H. F. Ludloff, On Aerodynamics of Blasts, in Advances in Applied Mechanics, Vol. 3 (Academic Press, New York, 1953).Google Scholar
  10. 10.
    A. N. Semenov, M. K. Berezkina, and V. I. Krasovskaya, Tech. Phys. 54, 491 (2009).CrossRefGoogle Scholar
  11. 11.
    A. N. Semenov, M. K. Berezkina, and V. I. Krasovskaya, Tech. Phys. 54, 497 (2009).CrossRefGoogle Scholar
  12. 12.
    L. G. Gvozdeva, Conditions of Instability of Three-Shock Configuration in Steady Flows, The 19th International Shock Interaction Symposium (ISIS-19) (Moscow, 2010).Google Scholar
  13. 13.
    S. A. Gavrenkov and L. G. Gvozdeva, Numerical Investigation of Triple Shock Configuration for Steady Cases in Real Gases, Physics of Extreme States of Matter (Chernogolovka, 2011), p. 66.Google Scholar
  14. 14.
    L. G. Gvozdeva, V. L. Borsch, and S. A. Gavrenkov, Proceesdings of the 28th Intern. Symp. on Shock Waves (Manchester, 2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Joint Institute of High Temperatures of the Russian Academy of SciencesMoscowRussia

Personalised recommendations