Skip to main content
Log in

Evolution of photoinduced charge in photorefractive crystal under pulsed photoinjection conditions

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Phenomena that accompany pulsed data recording in a photorefractive crystal are considered. A nonlinear problem of the relaxation of a charge generated in a photoconducting material under the action of a light pulse is solved. The spatiotemporal distribution of the electric field created by the photoinduced charge at a floating potential of the illuminated crystal surface is determined. The evolution of the integral pulsed response in the case of a longitudinal electro-optical modulation is studied. The obtained results can be used for analysis of the optical data recording process and for determining the drift mobility of carriers and the parameters of traps in high-ohmic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Spinger-Verlag, Heidelberg, 1991).

    Google Scholar 

  2. J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording and Materials Characterization (John Wiley & Sons, Hoboken, NJ, 2007).

    Google Scholar 

  3. P. Gunterand and J.-P. Huignard, Photorefractive Materials and Their Applications I: Basic Efffects (Springer, Berlin, 2006).

    Book  Google Scholar 

  4. P. J. Van Heerden, Appl. Opt. 2, 393 (1963).

    Article  ADS  Google Scholar 

  5. A. M. Bliznetsov, Yu. I. Kuz’min, and A. V. Khomenko, Zh. Tekh. Fiz. 58, 618 (1988) [Sov. Phys. Tech. Phys. 33, No. 3 (1988)].

    Google Scholar 

  6. Yu. I. Kuz’min, Pis’ma Zh. Tekh. Fiz. 23(18), 37 (1997) [Tech. Phys. Lett. 23, No. 9 (1997)].

    Google Scholar 

  7. E. G. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. V. Rode, and W. Krolikowski, Phys. Rev. B 81, 054 113 (2010).

    Article  Google Scholar 

  8. M. P. Hernandez-Garay, O. Martinez-Matos, J. G. Izquierdo, M. L. Calvo, P. Vaveliuk, P. Cheben, and L. Banares, Opt. Express 19, 1516 (2011).

    Article  ADS  Google Scholar 

  9. Yu. I. Kuz’min, Zh. Tekh. Fiz. 69(6), 71 (1999) [Tech. Phys. 43, No. 3 (1999)].

    MathSciNet  Google Scholar 

  10. T. Fujihara, T. Sassa, T. Muto, S. Umegaki, and T. Wada, Opt. Express 17, 14 150 (2009).

    Article  Google Scholar 

  11. H. Z. Kang, T. H. Zhang, H. H. Ma, C. B. Lou, S. M. Liu, J. G Tian., and J. J. Xu, Opt. Lett. 35, 1605 (2010).

    Article  ADS  Google Scholar 

  12. I. P. Batra, K. K. Kanazawa, B. H. Schechtman, and H. Seki, J. Appl. Phys. 42, 1124 (1971).

    Article  ADS  Google Scholar 

  13. D. M. Pai and B. E. Sprigett, Rev. Mod. Phys. 65, 163 (1993).

    Article  ADS  Google Scholar 

  14. H. S. Sommers, Jr., J. Appl. Phys. 34, 2923 (1963).

    Article  ADS  Google Scholar 

  15. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Kuzmin.

Additional information

Original Russian Text © Yu.I. Kuzmin, S.A. Ktitorov, I.V. Pleshakov, 2011, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2011, Vol. 37, No. 21, pp. 17–24.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuzmin, Y.I., Ktitorov, S.A. & Pleshakov, I.V. Evolution of photoinduced charge in photorefractive crystal under pulsed photoinjection conditions. Tech. Phys. Lett. 37, 996–998 (2011). https://doi.org/10.1134/S1063785011110083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785011110083

Keywords

Navigation