Skip to main content

Controlling graphite oxide bandgap width by reduction in hydrogen


Transformation of the chemical composition and electron structure of graphite oxide (GO) nanolayers as a result of their annealing in hydrogen has been studied by X-ray photoelectron spectroscopy using synchrotron radiation. It is established that both the chemical composition and bandgap width of GO can be controlled by varying the temperature and duration of heat treatment. By this means, the properties of GO nanolayers can be smoothly changed from dielectric to semiconductor.

This is a preview of subscription content, access via your institution.


  1. S. Stankovich, D. A. Dikin, R. D. Piner, et al., Carbon 45, 1558 (2007).

    Article  Google Scholar 

  2. Y. H. Wu, T. Yu, and Z. X. Shen, J. Appl. Phys. 108, 071 301 (2010).

    Google Scholar 

  3. H. A. Becerril, J. Mao, L. Zunfeng, et al., ACS Nano 2, 463 (2008).

    Article  Google Scholar 

  4. D. A. Dikin, S. Stankovich, E. J. Zimney, et al., Nature 448, 457 (2007).

    Article  ADS  Google Scholar 

  5. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science 306, 666 (2004).

    Article  ADS  Google Scholar 

  6. H.-K. Jeong, L. Colakerol, M. H. Jin, et al., Chem. Phys. Lett. 460, 499 (2008).

    Article  ADS  Google Scholar 

  7. D. Yang, A. Velamakanni, G. Bozoklu, et al., Carbon 47, 145 (2009).

    Article  Google Scholar 

  8. D. W. Lee, V. L. De Los Santos, J. W. Seo, et al., J. Phys. Chem. B 114, 5723 (2010).

    Article  Google Scholar 

  9. A. Dideykin, A. E. Aleksenskiy, D. Kirilenko, et al., Diamond Relat. Mater. 20, 105 (2011).

    Article  ADS  Google Scholar 

  10. S. I. Fedoseenko, D. V. Vyalikh, I. E. Iossifov, et al., Nucl. Instr. Meth. Phys. Res. A 505, 718 (2003).

    Article  ADS  Google Scholar 

  11. S. Park and R. S. Ruoff, Nature Nanotechnol. 4, 217 (2009).

    Article  ADS  Google Scholar 

  12. T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, et al., Carbon 43, 153 (2005).

    Article  Google Scholar 

  13. H.-K. Jeong, Ch. Yang, B. S. Kim, and K.-J. Kim, Europhys. Lett. 92, 37 005 (2010).

    Article  Google Scholar 

  14. H.-K. Jeong, M. H. Jin, K. P. So, et al., J. Phys. D: Appl. Phys. 42, 065 418 (2009).

    Google Scholar 

  15. F. Willis, B. Fitton, and G. S. Painter, Phys. Rev. B 9, 1926 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. M. Mikoushkin.

Additional information

Original Russian Text © V.M. Mikoushkin, V.V. Shnitov, S.Yu. Nikonov, A.T. Dideykin, S.P. Vul’, A.Ya. Vul’, D.A. Sakseev, D.V. Vyalikh, O.Yu. Vilkov, 2011, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2011, Vol. 37, No. 20, pp. 1–8.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mikoushkin, V.M., Shnitov, V.V., Nikonov, S.Y. et al. Controlling graphite oxide bandgap width by reduction in hydrogen. Tech. Phys. Lett. 37, 942–945 (2011).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • Technical Physic Letter
  • Bandgap Width
  • Graphite Oxide
  • Photoelectron Spectrum
  • Highly Orient Pyrolytic Graphite