Advertisement

Technical Physics Letters

, 37:929 | Cite as

Lead selenide nanowire growth by vapor-liquid-solid mechanism under mask during plasma processing

  • S. P. ZiminEmail author
  • E. S. Gorlachev
  • I. I. Amirov
  • V. V. Naumov
Article

Abstract

Data on the formation of lead selenide (PbSe) nanowires under a stencil mask during the processing of epitaxial PbSe films in high-density inductively coupled plasma (ICP) of low-pressure argon RF discharge are presented. The nanowires were studied by high-resolution scanning electron microscopy and energy-dispersive X-ray spectroscopy. A physical model is proposed that explains the local formation of PbSe nanowires in terms of their catalytic growth according to the vapor-liquid-solid mechanism.

Keywords

Inductively Couple Plasma PbSe High Resolution Scanning Electron Microscopy Lead Chalcogenide Lead Selenide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Adv. Mater. 15, 353 (2003).CrossRefGoogle Scholar
  2. 2.
    P. Yang, R. Yan, and M. Fardy, Nano Lett. 10, 1529 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).ADSCrossRefGoogle Scholar
  4. 4.
    V. G. Dubrovskii, Theory of Formation of Epitaxial Nanostructures (Fizmatlit, Moscow, 2009) [in Russian].Google Scholar
  5. 5.
    V. G. Dubrovskii and M. V. Nazarenko, Pis’ma Zh. Tekh. Fiz. 37(9), 75 (2011) [Tech. Phys. Lett. 37, 427 (2011)].Google Scholar
  6. 6.
    F. M. Ross, Rep. Prog. Phys. 73, 114 501 (2010).CrossRefGoogle Scholar
  7. 7.
    P. Dziawa, J. Sadowski, P. Dluzewski, E. Lusakowska, V. Domukhovski, B. Taliashvili, T. Wojciechowski, L. T. Baczewski, M. Bukala, M. Galicka, R. Buczko, P. Kasman, and T. Story, Cryst. Growth Design 10, 109 (2010).CrossRefGoogle Scholar
  8. 8.
    V. V. Lazenka, K. Bente, R. Kaden, V. A. Ivanov, and V. F. Gremenok, J. Adv. Microsc. Res. 6, 1 (2011).CrossRefGoogle Scholar
  9. 9.
    J. Zhu, H. Peng, C. K. Chan, K. Jarausch, X. F. Zhang, and Y. Cui, Nano Lett. 7, 1095 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    M. J. Bierman, Y. K. A. Lau, and S. Jin, Nano Lett. 7, 2907 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    Y. K. A. Lau, D. J. Chernak, M. J. Bierman, and S. Jin, J. Am. Chem. Soc. 131, 16 461 (2009).CrossRefGoogle Scholar
  12. 12.
    H. Jung, R. Kuljic, M. A. Stroscio, and M. Dutta, Appl. Phys. Lett. 96, 153 106 (2010).Google Scholar
  13. 13.
    H. Zogg, M. Arnold, F. Felder, M. Rahim, C. Ebneter, I. Zasavitskiy, N. Quack, S. Blunier, and J. Dual, J. Electron. Mater. 37, 1497 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    A. V. Dmitriev and I. P. Zvyagin, Usp. Fiz. Nauk 180, 821 (2010) [Phys. Usp. 53, 789 (2010)].CrossRefGoogle Scholar
  15. 15.
    S. P. Zimin, E. S. Gorlachev, I. I. Amirov, and H. Zogg, J. Phys. D: Appl. Phys. 42, 165 205 (2009).CrossRefGoogle Scholar
  16. 16.
    S. P. Zimin, I. I. Amirov, and E. S. Gorlachev, Semicond. Sci. Technol. 26, 055 018 (2011).Google Scholar
  17. 17.
    C. V. Plyatsko, Fiz. Tekh. Poluprovodn. (St. Petersburg) 32, 299 (1998) [Semiconductors 32, No. 3 (1998)].Google Scholar
  18. 18.
    J. G. Ma, M. E. Curtis, M. A. Zurbuchen, J. C. Keay, B. B. Weng, D. H. Li, F. H. Zhao, M. B. Johnson, and Z. Shi, J. Phys. D: Appl. Phys. 43, 455 411 (2010).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • S. P. Zimin
    • 1
    • 2
    Email author
  • E. S. Gorlachev
    • 1
    • 2
  • I. I. Amirov
    • 1
    • 2
  • V. V. Naumov
    • 1
    • 2
  1. 1.Yaroslavl State UniversityYaroslavlRussia
  2. 2.Institute of Physics and Technology (Yaroslavl Branch)Russian Academy of SciencesYaroslavlRussia

Personalised recommendations