Skip to main content
Log in

Reverse recovery of Si/Si1 − x Ge x heterodiodes fabricated by direct bonding

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

We have studied the process of reverse recovery of Si/Si1 − x Ge x heterodiodes fabricated by direct bonding of (111)-oriented n-type single crystal silicon wafers with p-type Si1 − x Ge x wafers of the same orientation containing 4–8 at. % Ge. An increase in the germanium concentration N Ge in p-Si1 − x Ge x layer is accompanied by a decrease in the reverse recovery time of heterodiodes. The presence of a sharp drop in the reverse current on the diode recovery characteristic can be explained by the existence of a narrow region with decreased minority carrier lifetime at the bonding interface (compared to carrier lifetime in the bulk), which is caused by the accumulation of misfit dislocations (generated by bonding (in this region). The results demonstrate the principal possibility of creating fast-recovery diodes based on the Si/Si1 − x Ge x heterosystem for high-power semiconductor devices manufactured using the direct bonding technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Li, Z. Q. Liu, A. Golland, and F. Wakeman, Proceedings of the European Power Electronics Congress (EPE-2005), pp. 44–46.

  2. Q. Y. Tong and U. Gösele, Semiconductor Wafer Bonding: Science and Technology (Wiley, New York, 1999).

    Google Scholar 

  3. I. V. Grekhov, T. S. Argunova, L. S. Kostina, et al., J. Electrochem Soc. 144, 622 (1007).

    Google Scholar 

  4. I. V. Grekhov, L. S. Kostina, T. S. Argunova, et al., Proceedings of the European Power Electronics Congress (EPE-97, November 6–8, 1997, Trondheim, Norway), pp. 2087–2092.

  5. N. Abrosimov, A. Lüdge, H. Riemann, and W. Schröder, J. Cryst. Growth 237–239, 356 (2002).

    Article  Google Scholar 

  6. F. Hirose, Y. Souda, K. Nakano, et al., IEEE Trans. Electron Dev. 48, 2417 (2001).

    Article  ADS  Google Scholar 

  7. T. S. Argunova, J. W. Jung, J. H. Je, N. V. Abrosimov, I. V. Grekhov, L. S. Kostina, A. V. Rozhkov, L. M. Sorokin, and A. G. Zabrodskii, J. Phys. D: Appl. Phys. 42, 1 (2009)

    Article  Google Scholar 

  8. E. C. Bean, Proc. IEEE 80, 571 (1992).

    Article  ADS  Google Scholar 

  9. V. Roberts and D. W. E. Allsopp, Semicond. Sci. Tech- nol. 11, 1346 (1996).

    Article  ADS  Google Scholar 

  10. F. Hirose, Y. Souda, K. Nakano, et al., IEEE Trans. Electron Dev. 48, 2417 (2001).

    Article  ADS  Google Scholar 

  11. I. V. Grekhov, E. I. Belyakova, L. S. Kostina, A. V. Rozhkov, et al., Pis’ma Zh. Tekh. Fiz. 34(23), 66 (2008) [Tech. Phys. Lett. 43, 1027 (2008)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Grekhov.

Additional information

Original Russian Text © I.V. Grekhov, E.I. Belyakova, L.S. Kostina, A.V. Rozhkov, T.S. Argunova, G.A. Oganesyan, 2011, published in Pis’ma v Zhurnal Tekhnicheskoĭ Fiziki, 2011, Vol. 37, No. 13, pp. 83–89.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grekhov, I.V., Belyakova, E.I., Kostina, L.S. et al. Reverse recovery of Si/Si1 − x Ge x heterodiodes fabricated by direct bonding. Tech. Phys. Lett. 37, 632–635 (2011). https://doi.org/10.1134/S1063785011070078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785011070078

Keywords

Navigation