Technical Physics Letters

, Volume 37, Issue 2, pp 112–115 | Cite as

Features of CoSi2 phase formation by two-stage rapid thermal annealing of Ti/Co/Ti/Si(100) structures

  • V. I. RudakovEmail author
  • Yu. I. Denisenko
  • V. V. Naumov
  • S. G. Simakin


A method of cobalt disilicide (CoSi2) layer formation proceeding from a Ti(8 nm)/Co(10 nm)/Ti(5 nm)/Si(100) (substrate) structure prepared by magnetron sputtering is described. The initial structure was subjected to two-stage rapid thermal annealing (RTA) in nitrogen, and the samples after each stage were studied by the time-of-flight secondary-ion mass spectrometry, Auger electron spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The RTA-1 stage (550°C, 45 s) resulted in the formation of a sacrificial surface layer of TiN x O y , which gettered residual impurities (O, C, N) from inner interfaces of the initial structure. After the chemical removal of this TiN x O y layer, the enrichment with cobalt at the RTA-2 stage (830°C, 25 s) led to the formation of a low-resistance CoSi2 phase.


Technical Physic Letter Rapid Thermal Annealing Depth Concentration Profile Temperature Rapid Thermal Annealing CoSi2 Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Li and J. Liu, J. Appl. Phys. 105, 084 905 (2009).Google Scholar
  2. 2.
    S. Murarka, Silicides for VLSI Applications (Academic Press, New York, 1983; Mir, Moscow, 1986).Google Scholar
  3. 3.
    R. A. Donaton, K. Maex, A. Vantomme, et al., Appl. Phys. Lett. 70, 1266 (1997).ADSCrossRefGoogle Scholar
  4. 4.
    C. Detavernier, C. Lavoie, and R. L. van Meirhaeghe, Thin Solid Films 468, 174 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    V. I. Rudakov and V. N. Gusev, Mikroelektronika 37(4), 245 (2008) [Russ. Microelectron. 37 (4), 215 (2008)].Google Scholar
  6. 6.
    US Patent no. 6 410 429, H01L21/44 (March 1, 2001).Google Scholar
  7. 7.
    M. Vulpio, D. Fazio, M. Bileci, et al., The 204th Meeting of the Electrochemical Society (October 12–16, 2003), Abstr. 594.Google Scholar
  8. 8.
    F. Wacquant, C. Regnier, M.-T. Basco, et al., in Advanced Short-Time Thermal Processing for Si-Based CMOS Devices, Ed, by. F. Roozeboom et al. (Electrochemical Society, Pennington, 2003), pp. 191–196.Google Scholar
  9. 9.
    Y. Gao, J. Appl. Phys. 64, 3760 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    Ch. W. Magee, W. L. Harrington, and E. M. Botnick, Int. J. Mass Spectrom. Ion Proc. 103, 45 (1990).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. I. Rudakov
    • 1
    Email author
  • Yu. I. Denisenko
    • 1
  • V. V. Naumov
    • 1
  • S. G. Simakin
    • 1
  1. 1.Institute of Physics and Technology (Yaroslavl Branch)Russian Academy of SciencesYaroslavlRussia

Personalised recommendations