Technical Physics Letters

, Volume 36, Issue 10, pp 929–932 | Cite as

On the degree of blocking of the surface recombination of photogenerated carriers in semiconductors by the subsurface variband layer

  • V. A. Kholodnov


A mathematically correct description of the model of carrier photogeneration by low-intensity radiation in surface-variband (graded-gap) semiconductors with a stepwise profile of the variband field at the boundary with the homogeneous region is proposed. A condition for the blocking of the surface recombination of photogenerated carriers by the variband layer is explicitly formulated.


Technical Physic Letter Homogeneous Region Photogenerated Carrier Jumplike Change Quasi Neutrality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Kroemer, Nobel Lecture: Quasi-Electric Fields and Band Offsets: Teaching Electrons New Tricks, Rev. Mod. Phys. 73, 783 (2001).CrossRefADSGoogle Scholar
  2. 2.
    A. M. Vasil’ev and A. P. Landsman, Semiconductor Photoconverters (Sov. Radio, Moscow, 1971), Ch. II, Sect. 6, pp. 46–55 [in Russian].Google Scholar
  3. 3.
    V. I. Il’in, S. F. Musikhin, and A. Ya. Shik, Variband Semiconductors and Heterostructures (Nauka, St. Petersburg, 2000), Ch. 1, Sects. 1.1–1.4; Ch. 4, Sect. 4.1 [in Russian].Google Scholar
  4. 4.
    Lightwave Communications Technology, Part D: Photodetectors, Ed. by W. T. Tsang (Academic, New York, 1985), Ch. 1, Sects. 1.4.4 and 1.4.5.Google Scholar
  5. 5.
    L. Dapkus, K. Pozhela, Yu. Pozhela, A. Shilenas, B. Jutsene, and V. Jasutis, Fiz. Tekh. Poluprovodn. (St. Petersburg) 39, 281 (2005) [Semiconductors 39, 265 (2005)].Google Scholar
  6. 6.
    K. D. Mynbaev and V. I. Ivanov-Omskii, Fiz. Tekh. Poluprovodn. (St. Petersburg) 40, 3 (2006) [Semiconductors 40, 1 (2006)].Google Scholar
  7. 7.
    Yu.N. Bobrenko, S.Yu. Pavelets, and A.M. Pavelets, Fiz. Tekh. Poluprovodn. (St. Petersburg) 43, 830 (2009) [Semiconductors 43, 801 (2009)].Google Scholar
  8. 8.
    O. V. Konstantinov and G. V. Tsarenkov, Fiz. Tekh. Poluprovodn. (Leningrad) 10, 720 (1976) [Sov. Phys. Semicond. 10, 427 (1976)].Google Scholar
  9. 9.
    V. A. Byvalyi, A. S. Volkov, Yu. A. Gol’dberg, A. G. Dmitriev, and B. V. Tsarenkov, Fiz. Tekh. Poluprovodn. (Leningrad) 13, 1110 (1979) [Sov. Phys. Semicond. 13, No. 6 (1979)].Google Scholar
  10. 10.
    B. S. Sokolovskii, V. I. Ivanov-Omskii, and G. A. Il’chuk, Fiz. Tekh. Poluprovodn. (St. Petersburg) 39, 1409 (2005) [Semiconductors 39, 1361 (2005)].Google Scholar
  11. 11.
    R. F. Kazarinov and G. V. Tsarenkov, Fiz. Tekh. Poluprovodn. (Leningrad) 10, 297 (1976) [Sov. Phys. Semicond. 10, 178 (1976)].Google Scholar
  12. 12.
    V. A. Kholodnov and A. A. Drugova, Pis’ma Zh. Tekh. Fiz. 27(12), 42 (2001) [Tech. Phys. Lett. 27, 504 (2001)].Google Scholar
  13. 13.
    I. G. Savitskii and B. S. Sokolovskii, Fiz. Tekh. Poluprovodn. (St. Petersburg) 31, 3 (1997) [Semiconductors 31, 1 (1997)]Google Scholar
  14. 14.
    A. Drugova, V. Kholodnov, and M. Nikitin, Phys. Status Solidi (c) 2, 1212 (2005).CrossRefADSGoogle Scholar
  15. 15.
    G. V. Chekanova, A. A. Drugova, V. A. Kholodov, and M. S. Nikitin, Proc. SPIE 7113, 71131H (2008).CrossRefGoogle Scholar
  16. 16.
    A. I. Izhnin, I. I. Izhnin, K. D. Mynbaev, V. I. Ivanov-Omskii, N. L. Bazhenov, V. A. Smirnov, V. S. Varavin, N. N. Mikhailov, and G. Yu. Sidorov, Pis’ma Zh. Tekh. Fiz. 35(3), 103 (2009) [Tech. Phys. Lett. 35, 147 (2009)].Google Scholar
  17. 17.
    P. Migliorato and A. M. White, Solid State Electron. 26, 65 (1983).CrossRefADSGoogle Scholar
  18. 18.
    D. L. Smith, Appl. Phys. Lett. 45, 83 (1984).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Institute of Radio Engineering and ElectronicsRussian Academy of SciencesMoscowRussia

Personalised recommendations