Skip to main content
Log in

Effective regimes of runaway electron beam generation in helium, hydrogen, and nitrogen

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Runaway electron beam parameters and current-voltage characteristics of discharge in helium, hydrogen, and nitrogen at pressures in the range of several Torr to several hundred Torr have been studied. It is found that the maximum amplitudes of supershort avalanche electron beams (SAEBs) with a pulse full width at half maximum (FWHM) of ∼100 ps are achieved in helium, hydrogen, and nitrogen at a pressure of ∼60, ∼30, and ∼10 Torr, respectively. It is shown that, as the gas pressure is increased in the indicated range, the breakdown voltage of the gas-filled gap decreases, which leads to a decrease in the SAEB current amplitude. At pressures of helium within 20–60 Torr, hydrogen within 10–30 Torr, and nitrogen within 3–10 Torr, the regime of the runaway electron beam generation changes and, by varying the pressure in the gas-filled diode in the indicated intervals, it is possible to smoothly control the current pulse duration (FWHM) from ∼100 to ∼500 ps, while the beam current amplitude increases by a factor of 1.5–3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. P. Babich, High-Energy Phenomena in Electric Discharges in Dense Gases: Theory, Experiment, and Natural Phenomena (ISTC Science and Technology Series, Vol. 2) (Futurepast Inc., Arlington (VA), 2003).

    Google Scholar 

  2. Runaway Electron Beams and Discharges Based on Background Electron Multiplication Wave in Dense Gas (Trudy IOFAN, Vol. 63), Ed. by S. I. Yakovlenko (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  3. V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, and D. V. Rybka, Plasma Dev. Oper. 16, 267 (2008).

    Article  Google Scholar 

  4. G. A. Mesyats, Pis’ma Zh. Éksp. Teor. Fiz. 85, 119 (2007) [JETP Lett. 85, 109 (2007)].

    Google Scholar 

  5. P. B. Repin and A. G. Rep’ev, Zh. Tekh. Fiz. 78(1), 78 (2008) [Tech. Phys. 53, 73 (2008)].

    Google Scholar 

  6. J. E. Chaparro, W. Justis, H. G. Krompholz, L. L. Hatfield, and A. A. Neuber, IEEE Trans. Plasma Sci. 36, 2505 (2008).

    Article  ADS  Google Scholar 

  7. V. I. Karelin and A. A. Tren’kin, Pis’ma Zh. Tekh. Fiz. 35(9), 37 (2009) [Tech. Phys. Lett. 35, 407 (2009)].

    Google Scholar 

  8. D. S. Mastyugin, V. V. Osipov, and V. I. Solomonov, Pis’ma Zh. Tekh. Fiz. 35(11), 10 (2009) [Tech. Phys. Lett. 35, 487 (2009)].

    Google Scholar 

  9. S. B. Alekseev, V. M. Orlovskii, and V. F. Tarasenko, Kvantovaya Élektron. (Moscow) 33, 1059 (2003) [Quantum Electron. 32, 1059 (2003)].

    Article  Google Scholar 

  10. E. I. Lipatov, V. F. Tarasenko, V. M. Orlovskii, S. B. Alekseev, and D. V. Rybka, Pis’ma Zh. Tekh. Fiz. 31(6), 29 (2005) [Tech. Phys. Lett. 31, 231 (2005)].

    Google Scholar 

  11. I. D. Kostyrya, V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, M. I. Lomaev, and D. V. Rybka, Pis’ma Zh. Tekh. Fiz. 35 (21), 79 (2009) [Tech. Phys. Lett. 35, 1012 (2009)].

    Google Scholar 

  12. L. V. Tarasova, L. N. Khudyakova, T. V. Loiko, and V. A. Tsukerman, Zh. Tekh. Fiz. 44, 564 (1974) [Sov. Phys. Tech. Phys. 19, 351 (1972)].

    Google Scholar 

  13. S. B. Alekseev, V. M. Orlovskii, V. F. Tarasenko, A. N. Tkachev, and S. I. Yakovlenko, Zh. Tekh. Fiz. 75(12), 89 (2005) [Tech. Phys. 50, 1623 (2005)].

    Google Scholar 

  14. E. Kh. Baksht, M. I. Lomaev, D. V. Rybka, and V. F. Tarasenko, Pis’ma Zh. Tekh. Fiz. 32(21), 69 (2006) [Tech. Phys. Lett. 32, 948 (2006)].

    Google Scholar 

  15. E. Kh. Baksht, A. G. Burachenko, M. I. Lomaev, D. V. Rybka, and V. F. Tarasenko, Zh. Tekh. Fiz. 78(1), 98 (2008) [Tech. Phys. 53, 93 (2008)].

    Google Scholar 

  16. E. Kh. Baksht, M. I. Lomaev, D. V. Rybka, D. A. Sorokin, and V. F. Tarasenko, Zh. Tekh. Fiz. 78(12), 29 (2008) [Tech. Phys. 53, 1560 (2008)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Tarasenko.

Additional information

Original Russian Text © V.F. Tarasenko, E.Kh. Baksht, A.G. Burachenko, M.I. Lomaev, D.A. Sorokin, Yu.V. Shut’ko, 2010, published in Pis’ma v Zhurnal Tekhnicheskoĭ Fiziki, 2010, Vol. 36, No. 8, pp. 60–67.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarasenko, V.F., Baksht, E.K., Burachenko, A.G. et al. Effective regimes of runaway electron beam generation in helium, hydrogen, and nitrogen. Tech. Phys. Lett. 36, 375–378 (2010). https://doi.org/10.1134/S1063785010040255

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785010040255

Keywords

Navigation