Skip to main content
Log in

Superlow elastic stability of NaCl-H2O ice at 100–215 K

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

A superlow elastic stability of low-saline NaCl-H2O ice in a broad range of low temperatures (100–215 K) has been observed under the conditions of strong uniaxial compression. The level of elastic stability of the saline ice (containing a low mass fraction of NaCl within p = 0.0001–0.01) was 15–30 times smaller than in pure freshwater ice. This phenomenon can be used for the controlled production of steam, hydrogen, and oxygen using explosive fragmentation and in other low-temperature processes involving ice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. G. Fateev, Pis’ma Zh. Tekh. Fiz. 34(9), 1 (2008) [Tech. Phys. Lett. 34, 363 (2008)].

    Google Scholar 

  2. E. G. Fateev, Pis’ma Zh. Tekh. Fiz. 32(23), 15 (2006) [Tech. Phys. Lett. 32, 1006 (2006)].

    Google Scholar 

  3. E. G. Fateev, Astron. Vestn. 42(2), 132 (2008) [Solar Syst. Res. 42, 124 (2008)].

    MathSciNet  Google Scholar 

  4. E. G. Fateev, Zh. Tekh. Fiz. 73(4), 43 (2003) [Tech. Phys. 48, 421 (2003)].

    Google Scholar 

  5. E. M. Schulson and O. Y. Nickolayev, J. Geophys. Res. B 100(11), 22383 (1995).

    Article  ADS  Google Scholar 

  6. E. G. Fateev, Pis’ma Zh. Éksp. Teor. Fiz. 88, 276 (2008) [JETP Lett. 88, 240 (2008)].

    Google Scholar 

  7. V. T. Fedorov and Kh. B. Khokonov, Dokl. Akad. Nauk SSSR 300, 1126 (1988) [Sov. Phys. Dokl. 33, 463 (1988)].

    Google Scholar 

  8. P. W. Bridgman, Phys. Rev 48, 825 (1935).

    Article  ADS  Google Scholar 

  9. E. G. Fateev, Zh. Tekh. Fiz. 75(2), 53 (2005) [Tech. Phys. 50, 193 (2005)].

    Google Scholar 

  10. E. G. Fateev, Pis’ma Zh. Éksp. Teor. Fiz. 73, 482 (2001) [JETP Lett. 73, 432 (2001)].

    Google Scholar 

  11. F. Franks, Pure Appl. Chem. 65, 2527 (1993).

    Article  Google Scholar 

  12. S. N. Zhurkov, V. S. Kuksenko, and V. A. Petrov, Dokl. Akad. Nauk SSSR 259, 1350 (1981).

    Google Scholar 

  13. H. Cho, P. B. Shepson, L. A. Barrie, et al., J. Phys. Chem. B 106, 11226 (2002).

    Article  Google Scholar 

  14. J. A. White, E. Schweigler, G. Galli, et al., J. Chem. Phys. 113, 4668 (2000).

    Article  ADS  Google Scholar 

  15. D. Corradini, P. Gallo, and M. Rovere, J. Chem. Phys. 128, 244 508 (2008).

    Article  Google Scholar 

  16. G. A. Krestov, Thermodynamics of Processes in Solutions (Khimiya, Leningrad, 1984).

    Google Scholar 

  17. B. I. Halperin, S. Feng, and P. N. Sen, Phys. Rev. Lett. 54, 2391 (1985).

    Article  ADS  Google Scholar 

  18. M. R. Frank, H. P. Scott, S. J. Maglio, et al., Phys. Earth Planet. Intern. 170, 107 (2008)

    Article  ADS  Google Scholar 

  19. M. Sahimi and S. Arbabi, Phys. Rev. Lett. 68, 608 (1992).

    Article  ADS  Google Scholar 

  20. Y. Kantor and M. I. Webman, Phys. Rev. Lett. 52, 1891 (1984).

    Article  ADS  Google Scholar 

  21. C. Lobban, J. L. Finney, and W. F. Kuhs, Nature 391 (6664), 268 (1998).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Fateev.

Additional information

Original Russian Text © E.G. Fateev, 2010, published in Pis’ma v Zhurnal Tekhnicheskoĭ Fiziki, 2010, Vol. 36, No. 7, pp. 38–44.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fateev, E.G. Superlow elastic stability of NaCl-H2O ice at 100–215 K. Tech. Phys. Lett. 36, 312–314 (2010). https://doi.org/10.1134/S1063785010040073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785010040073

Keywords

Navigation