Skip to main content
Log in

Features of the transverse discharge glow depending on the gas flow rate in a vortex chamber

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Experimentally observed features in the formation of glowing zones in gas discharge at various mass flow rates are qualitatively explained based on the numerical simulation of a turbulent swirling flow with a local source of heat release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Klimov, V. Bitiurin, B. Tolkunov, I. Moralev, K. Shirnov, M. Plotnikova, K. Minko, and V. Kutlaliev, Proc. 46th AIAA Aerospace Sciences Meeting (January 7–11, 2008, Reno, Nevada), AIAA Paper 2008-1386.

  2. A. Klimov, V. Bitiurin, B. Tolkunov, I. Moralev, M. Plotnikova, K. Minko, N. Molevich, and I. Zavershinsky, Proc. 47th AIAA Aerospace Sciences Meeting Including the New Horizonts Forum and Aerospace Exposition (January 5–8, 2009, Orlando, Florida), AIAA Paper 2009-1046.

  3. Yu.P. Raizer, Principles of Modern Physics of Gas-Discharge Processes (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  4. A. Gupta, D. Lilley, and N. Syred, Swirl Flows (Abakus Press, Kent (UK), 1984; Mir, Moscow, 1987).

    Google Scholar 

  5. A.F. Gutsol, Usp. Fiz. Nauk 167, 665 (1997) [Phys. Usp. 40, 623 (1997)].

    Article  Google Scholar 

  6. I. I. Smul’skii, Aerodynamics and Processes in Vortex Chambers (Nauka, Novosibirsk, 1992) [in Russian].

    Google Scholar 

  7. M. A. Gol’dshtik, Vortex Flows (Nauka, Novosibirsk, 1981) [in Russian].

    Google Scholar 

  8. V. K. Shchukin and A. A. Khalatov, Heat Exchange, Mass Transfer, and Hydrodynamics of Swirling Flows in Axisymmetric Channels (Mashinostroenie, Moscow, 1982) [in Russian].

    Google Scholar 

  9. O. V. Kazantseva, Sh. A. Piralishvili, and A. A. Fuzeeva, Teplofiz. Vys. Temp. 43, 606 (2005).

    Google Scholar 

  10. O. V. Mitrofanova, Teplofiz. Vys. Temp. 41, 587 (2003).

    Google Scholar 

  11. S. T. Surzhikov, Teplofiz. Vys. Temp. 40, 591 (2002).

    Google Scholar 

  12. A. L. Zheleznyakova and S. T. Surzhikov, Physicochemical Kinetics in Gasdynamics, www.chemphys.edu.ru/pdf/2008-09-01-034.pdf.

  13. A. V. Kazakov, Mekh. Zhidk. Gaza, No. 6, 47 (1998).

  14. E. S. Asmolov, A. V. Kazakov, A. F. Kiselev, and D. A. Rus’yanov, Teplofiz. Vys. Temp. 43, 594 (2005).

    Google Scholar 

  15. D. G. Lilley, AIAA J. 11, 955 (1973).

    Article  ADS  Google Scholar 

  16. P. R. Spalart and M. L. Shur, Aerospace Sci. Technol. 1(5), 297 (1997).

    Article  MATH  Google Scholar 

  17. M. L. Shur, M. K. Strelets, A. K. Travin, and P. R. Spalart, AIAA J. 38, 784 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Molevich.

Additional information

Original Russian Text © I.P. Zavershinskii, A.I. Klimov, V.G. Makaryan, N.E. Molevich, I.A. Moralev, D.P. Porfir’ev, 2009, published in Pis’ma v Zhurnal Tekhnicheskoĭ Fiziki, 2009, Vol. 35, No. 24, pp. 59–66.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zavershinskii, I.P., Klimov, A.I., Makaryan, V.G. et al. Features of the transverse discharge glow depending on the gas flow rate in a vortex chamber. Tech. Phys. Lett. 35, 1152–1155 (2009). https://doi.org/10.1134/S1063785009120232

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785009120232

Keywords

Navigation