Skip to main content
Log in

Light modulator on excitons in a quantum well of an optical microcavity

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The operation principle of a light modulator based on the magnetic or electric field control of the frequency of excitons in a quantum well of an optical microcavity is proposed and theoretically justified. It is shown that the main advantage of the proposed scheme is a large depth of modulation of the radiation intensity. The use of ferromagnetic semiconductors for the formation of exciton states in the quantum well makes possible the creation of a light modulator operating at room temperature in relatively weak magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, J. Phys. D: Appl. Phys. 39, R151 (2006).

    Article  ADS  Google Scholar 

  2. T. Fuji, T. Suzuki, Y. Fujimori, T. Nakamura, M. Moriwake, and H. Takasu, Jpn. J. Appl. Phys. 45(9B), 7520 (2006).

    Article  ADS  Google Scholar 

  3. Spatial Light Modulator Technology: Materials, Devices and Applications, Ed. by U. Efros (Marcel Dekker, New York, 1995).

    Google Scholar 

  4. Yu. P. Sukhorukov, A. V. Telegin, E. A. Gan’shina, et al., Pis’ma Zh. Tekh. Fiz. 31(11), 78 (2005) [Tech. Phys. Lett. 31, 484 (2005)].

    Google Scholar 

  5. A. B. Granovsky, E. A. Gan’shina, A. N. Yurasov, Yu. V. Boriskina, S. G. Erokhin, A. B. Khanikaev, M. Inoue, A. P. Vinogradov, and Yu. P. Sukhorukov, Radiotekh. Élektron. 52, 1152 (2007) [J. Comm. Technol. Electron. 52, 1065 (2007)].

    Google Scholar 

  6. E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Springer-Alpha Science International, 2005).

  7. Magnetism in Semiconducting Oxides, Ed. by Nguyen Hoa Hong (Trans Research Network, 2007).

  8. T. Fukumura, H. Tayosaki, and Y. Yamada, Semicond. Sci. Technol. 20, S103 (2005).

    Article  ADS  Google Scholar 

  9. M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, Semicond. Sci. Technol. 13, 645 (1998).

    Article  ADS  Google Scholar 

  10. E. L. Ivchenko, A. V. Kavokin, V. P. Kochereshko, G. R. Posina, I. N. Uraltsev, D. R. Yakovlev, R. N. Bicknell-Tassius, A. Waag, and G. Landwehr, Phys. Rev. B 46, 7713 (1992).

    Article  ADS  Google Scholar 

  11. J. K. Furdyna, J. Appl. Phys. 64, R29 (1988).

    Article  ADS  Google Scholar 

  12. D. D. Solnyshkov, M. M. Glazov, I. A. Shelykh, A. V. Kavokin, E. L. Ivchenko, and G. Malpuech, Phys. Rev. B 78, 165 323 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Granovsky.

Additional information

Original Russian Text © S.G. Erokhin, L.I. Deych, A.A. Lisyansky, A.B. Granovsky, 2009, published in Pis’ma v Zhurnal Tekhnicheskoĭ Fiziki, 2009, Vol. 35, No. 17, pp. 1–9.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erokhin, S.G., Deych, L.I., Lisyansky, A.A. et al. Light modulator on excitons in a quantum well of an optical microcavity. Tech. Phys. Lett. 35, 785–788 (2009). https://doi.org/10.1134/S1063785009090016

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785009090016

PACS numbers

Navigation