Skip to main content
Log in

Single nanodimensional emitting protrusion on the surface of a tungsten carbide field emitter

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Variations in the shape of a tungsten carbide emitter under the simultaneous action of strong electric fields and high temperatures have been studied by field emission microscopy techniques. Using controlled decrease in the applied electric field strength at a certain temperature of the emitter, it is possible to grow a single nanodimensional surface protrusion capable of emitting charged particles with stability comparable to that of carbon-based materials. The values of emission currents, current densities, emission angles, and reduced brightnesses are comparable to those known for emitters based on carbon nanotubes. Advantages of single nanoprotrusions as emitters are their complete reproducibility and the ability to emit both electrons and ions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Shrednik, in Growth of Crystals (Nauka, Moscow, 1980), Vol. 13, pp. 68–79 [in Russian].

    Google Scholar 

  2. J. A. Vlasov, O. L. Golubev, and V. N. Shrednik, J. Phys. Coll. 49(C6), 131 (1988).

    Google Scholar 

  3. V. G. Pavlov, A. A. Rabinovich, and V. N. Shrednik, Fiz. Tverd. Tela (Leningrad) 17, 2045 (1975) [Sov. Phys. Solid State 17, 1335 (1975)].

    Google Scholar 

  4. V. G. Butenko, O. L. Golubev, Yu. A. Vlasov, and V. N. Shrednik, Surf. Sci. 266, 165 (1992).

    Article  ADS  Google Scholar 

  5. Yu. A. Vlasov, O. L. Golubev, and V. N. Shrednik, in Growth of Crystals (Nauka, Moscow, 1991), Vol. 19, pp. 5–21 [in Russian].

    Google Scholar 

  6. V. G. Pavlov, A. A. Rabinovich, and V. N. Shrednik, Zh. Tekh. Fiz. 45, 2126 (1975) [Sov. Phys. Tech. Phys. 20,1337 (1975)].

    Google Scholar 

  7. O. L. Golubev and M. V. Loginov, Zh. Tekh. Fiz. 76(9), 107 (2006) [Tech. Phys. 51, 1215 (2006)].

    Google Scholar 

  8. V. N. Gurin, M. M. Korsukova, M. V. Loginov, and V. N. Shrednik, Zh. Tekh. Fiz. 71(9), 97 (2001) [Tech. Phys. 46, 1161 (2001)].

    Google Scholar 

  9. A. P. Komar and Yu. A. Talanin, Izv. Akad. Nauk SSSR, Ser. Fiz. 22, 580 (1958).

    Google Scholar 

  10. O. L. Golubev, B. M. Shaikhin, and V. N. Shrednik, Pis’ma Zh. Tekh. Fiz. 1, 714 (1975) [Sov. Tech. Phys. Lett. 1, 313 (1975)].

    Google Scholar 

  11. M. V. Loginov and V. N. Shrednik, Pis’ma Zh. Tekh. Fiz. 29(13), 1 (2003) [Tech. Phys. Lett. 29, 529 (2003)].

    Google Scholar 

  12. V. S. Fomenko, Emission Properties of Materials: AHandbook (Naukova Dumka, Kiev, 1981) [in Russian].

    Google Scholar 

  13. C. M. C. Sastilgo and D. G. Kinghan, Surf. Sci. 173, 75 (1986).

    Article  Google Scholar 

  14. P. W. Hawkes and E. Kasper, Principles of Electron Optics II: Applied Geometrical Optics (Academic, London, 1996).

    Google Scholar 

  15. N. De Jonge, J. Appl. Phys. 95, 673 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. L. Golubev.

Additional information

Original Russian Text © O.L. Golubev, 2009, published in Pis’ma v Zhurnal Tekhnicheskoĭ Fiziki, 2009, Vol. 35, No. 12, pp. 18–24.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golubev, O.L. Single nanodimensional emitting protrusion on the surface of a tungsten carbide field emitter. Tech. Phys. Lett. 35, 545–547 (2009). https://doi.org/10.1134/S1063785009060182

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785009060182

PACS numbers

Navigation