Skip to main content
Log in

Bistability in radiative heat exchange

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The possibility of a bistable regime in systems with radiative heat exchange is theoretically demonstrated for the first time. The transfer characteristics of a radiation-closed stationary system have been calculated, in which the radiator is a blackbody and the absorber is made of a material with the absorptivity sharply increasing in a certain temperature interval. The radiator and absorber are separated by a vacuum gap. The heat exchange between the system and the environment is controlled by varying the flow rate of a heat-transfer agent cooling the absorber. The output parameter of a bistable system is the absorber temperature, while the input parameter can be either the radiator temperature or the heat-transfer agent flow rate. Depending on the choice of the input parameter, the transfer characteristic of the system is either represented by a usual S-like curve or has an inverted shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Merzhanov and E. N. Rumanov, Rev. Mod. Phys. 71, 1173 (1999).

    Article  ADS  Google Scholar 

  2. H. Hausen, Heat Transfer in Counterflow, Parallel Flow and Cross Flow (McGraw-Hill, New York, 1983).

    Google Scholar 

  3. J. L. Rogers, M. F. Schatz, O. Brausch, and W. Pesch, Phys. Rev. Lett. 85, 4281 (2000).

    Article  ADS  Google Scholar 

  4. A. G. Merzhanov and E. N. Rumanov, Usp. Fiz. Nauk 151, 553 (1987) [Sov. Phys. Usp. 30, 293 (1987)].

    Google Scholar 

  5. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985).

    Google Scholar 

  6. A. Joshi, A. Brown, H. Wang, and M. Xiao, Phys. Rev. A 67, 041 801 (2003).

  7. E. M. Epshtein, Zh. Tekh. Fiz. 48, 1733 (1981) [Sov. Phys. Tech. Phys. 23, 983 (1978)].

    Google Scholar 

  8. N. N. Rozanov, Zh. Eksp. Teor. Fiz. 80, 96 (1981) [Sov. Phys. JETP 53, 47 (1981)].

    MathSciNet  Google Scholar 

  9. D. R. Gamelin, S. R. Luthi, and H. R. Gudel, J. Phys. Chem. B 104, 11405 (2000).

    Google Scholar 

  10. A. Kuditcher, M. P. Hehlen, C. M. Florea, et al., Phys. Rev. Lett. 84, 1898 (2000).

    Article  ADS  Google Scholar 

  11. S. M. Redmond, S. C. Rand, and S. L. Oliveira, Appl. Phys. Lett. 85, 5517 (2004).

    Article  ADS  Google Scholar 

  12. D. Kip, M. Wesner, and E. Krätzig, Appl. Phys. Lett. 72, 1960 (1998).

    Article  ADS  Google Scholar 

  13. J. Boyce, J. P. Torres, and R. Y. Chiao, ArXiv:physics 2, 9907039 (1999).

  14. R. Siegel and J. Howell, Thermal Radiation Heat Transfer (McGraw-Hill, New York, 1972).

    Google Scholar 

  15. K. Ujihara, J. Appl. Phys. 43, 2376 (1972).

    Article  ADS  Google Scholar 

  16. R. Smith, Semiconductors (Cambridge University Press, Cambridge, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Ovcharov.

Additional information

Original Russian Text © V.I. Rudakov, V.V. Ovcharov, V.P. Prigara, 2008, published in Pis’ma v Zhurnal Tekhnicheskoĭ Fiziki, 2008, Vol. 34, No. 16, pp. 79–87.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudakov, V.I., Ovcharov, V.V. & Prigara, V.P. Bistability in radiative heat exchange. Tech. Phys. Lett. 34, 718–721 (2008). https://doi.org/10.1134/S1063785008080282

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785008080282

PACS numbers

Navigation