Technical Physics Letters

, Volume 34, Issue 8, pp 718–721 | Cite as

Bistability in radiative heat exchange

  • V. I. Rudakov
  • V. V. OvcharovEmail author
  • V. P. Prigara


The possibility of a bistable regime in systems with radiative heat exchange is theoretically demonstrated for the first time. The transfer characteristics of a radiation-closed stationary system have been calculated, in which the radiator is a blackbody and the absorber is made of a material with the absorptivity sharply increasing in a certain temperature interval. The radiator and absorber are separated by a vacuum gap. The heat exchange between the system and the environment is controlled by varying the flow rate of a heat-transfer agent cooling the absorber. The output parameter of a bistable system is the absorber temperature, while the input parameter can be either the radiator temperature or the heat-transfer agent flow rate. Depending on the choice of the input parameter, the transfer characteristic of the system is either represented by a usual S-like curve or has an inverted shape.

PACS numbers

42.65.Pc 44.40.+a 61.82.Bg 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. Merzhanov and E. N. Rumanov, Rev. Mod. Phys. 71, 1173 (1999).CrossRefADSGoogle Scholar
  2. 2.
    H. Hausen, Heat Transfer in Counterflow, Parallel Flow and Cross Flow (McGraw-Hill, New York, 1983).Google Scholar
  3. 3.
    J. L. Rogers, M. F. Schatz, O. Brausch, and W. Pesch, Phys. Rev. Lett. 85, 4281 (2000).CrossRefADSGoogle Scholar
  4. 4.
    A. G. Merzhanov and E. N. Rumanov, Usp. Fiz. Nauk 151, 553 (1987) [Sov. Phys. Usp. 30, 293 (1987)].Google Scholar
  5. 5.
    H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985).Google Scholar
  6. 6.
    A. Joshi, A. Brown, H. Wang, and M. Xiao, Phys. Rev. A 67, 041 801 (2003).Google Scholar
  7. 7.
    E. M. Epshtein, Zh. Tekh. Fiz. 48, 1733 (1981) [Sov. Phys. Tech. Phys. 23, 983 (1978)].Google Scholar
  8. 8.
    N. N. Rozanov, Zh. Eksp. Teor. Fiz. 80, 96 (1981) [Sov. Phys. JETP 53, 47 (1981)].MathSciNetGoogle Scholar
  9. 9.
    D. R. Gamelin, S. R. Luthi, and H. R. Gudel, J. Phys. Chem. B 104, 11405 (2000).Google Scholar
  10. 10.
    A. Kuditcher, M. P. Hehlen, C. M. Florea, et al., Phys. Rev. Lett. 84, 1898 (2000).CrossRefADSGoogle Scholar
  11. 11.
    S. M. Redmond, S. C. Rand, and S. L. Oliveira, Appl. Phys. Lett. 85, 5517 (2004).CrossRefADSGoogle Scholar
  12. 12.
    D. Kip, M. Wesner, and E. Krätzig, Appl. Phys. Lett. 72, 1960 (1998).CrossRefADSGoogle Scholar
  13. 13.
    J. Boyce, J. P. Torres, and R. Y. Chiao, ArXiv:physics 2, 9907039 (1999).Google Scholar
  14. 14.
    R. Siegel and J. Howell, Thermal Radiation Heat Transfer (McGraw-Hill, New York, 1972).Google Scholar
  15. 15.
    K. Ujihara, J. Appl. Phys. 43, 2376 (1972).CrossRefADSGoogle Scholar
  16. 16.
    R. Smith, Semiconductors (Cambridge University Press, Cambridge, 1978).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • V. I. Rudakov
    • 1
  • V. V. Ovcharov
    • 1
    Email author
  • V. P. Prigara
    • 1
  1. 1.Institute of Physics and TechnologyRussian Academy of SciencesYaroslavlRussia

Personalised recommendations