Skip to main content
Log in

Dynamic model of three-dimensional cluster formation

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

A discrete three-dimensional model has been developed for the computer simulation of multistage processes involved in the formation of a porous space in semiconductor crystals anodized in a reactive medium. A related program package is created that provides the dynamic simulation of cluster formation in depth of a semiconductor crystal with allowance for the processes taking place on the surface, chemical reactions accompanying these processes, and applied external fields. The maximum fractal dimension of structures obtained using this algorithm within the framework of the proposed model is 2.68.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Nallet, E. Chassaing, M. G. Walls, et al., Appl. Phys. 79, 6884 (1996).

    Article  Google Scholar 

  2. S. Aravamudhan, K. Luongo, P. Poddar, et al., Appl. Phys. A 83, 773 (2007).

    Article  ADS  Google Scholar 

  3. S. A. Kaplii, A. V. Prokaznikov, and N. A. Rud’, Zh. Tekh. Fiz. 74(5), 6 (2004) [Tech. Phys. 49, 526 (2004)].

    Google Scholar 

  4. S. A. Kaplii, A. V. Prokaznikov, and N. A. Rud’, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 31 (2004) [Russ. Phys. J. 47, 609 (2004)].

  5. V. I. Klyatskin and D. Gurarii, Usp. Fiz. Nauk. 169, 171 (1999) [Phys. Usp. 42, 165 (1999)].

    Article  Google Scholar 

  6. J. Feder, Fractals (Plenum, New York, 1988).

    MATH  Google Scholar 

  7. S. A. Kaplii, A. V. Prokaznikov, and N. A. Rud’, Pis’ma Zh. Tekh. Fiz. 30(14), 46 (2004) [Tech. Phys. Lett. 30, 595 (2004)].

    Google Scholar 

  8. S. A. Kaplii, A. V. Prokaznikov, and N. A. Rud’, Zh. Tekh. Fiz. 75(12), 1 (2005) [Tech. Phys. 50, 1535 (2005)].

    Google Scholar 

  9. V. K. Vanag, Usp. Fiz. Nauk. 169, 481 (1999) [Phys. Usp. 42, 413 (1999)].

    Google Scholar 

  10. Fractals in Physics, Ed. by L. Pietronero and E. Tosati (North-Holland, Amsterdam, 1986).

    Google Scholar 

  11. A. V. Prokaznikov and V. B. Svetovoy, Phys. Low-Dim. Struct. 9/10, 65 (2002).

    Google Scholar 

  12. S. A. Nikitchuk, M. V. Lokhanin, A. V. Prokaznikov, et al., Pis’ma Zh. Tekh. Fiz. 31(12), 48 (2004) [Tech. Phys. Lett. 31, 513 (2005)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Prokaznikov.

Additional information

Original Russian Text © A.V. Mozhaev, É.Yu. Buchin, A.V. Prokaznikov, 2008, published in Pis’ma v Zhurnal Tekhnicheskoĭ Fiziki, 2008, Vol. 34, No. 10, pp. 53–60.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mozhaev, A.V., Buchin, ω.Y. & Prokaznikov, A.V. Dynamic model of three-dimensional cluster formation. Tech. Phys. Lett. 34, 431–434 (2008). https://doi.org/10.1134/S1063785008050210

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785008050210

PACS numbers

Navigation