Skip to main content
Log in

Thermoelectric convection in a variable temperature field

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

We have studied the convective instability of a horizontal layer of a liquid semiconductor or an ionic melt in the presence of a variable temperature gradient under microgravity conditions in the case where an excess charge can appear only as a result of the thermostimulated diffusion. Thresholds for the onset of thermoelectric convective instability are determined. It is established that, under variable thermal action with a zero mean value, perturbations of a subharmonic response are absent. Depending on the amplitude and frequency of modulation and on the physical properties of the semiconductor (or the melt), synchronous perturbations are differently manifested and belong to various classes. The amplitudes and frequencies of an external action necessary for the effective suppression of thermoelectric convection are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Z. Gershuni and E. M. Zhukhovitskii, Convective Stability of Incompressible Fluids (Nauka, Moscow, 1972; Springfield, Jerusalem, 1976).

    Google Scholar 

  2. G. A. Ostroumov, Interaction of Electric and Hydrodynamic Fields (Fizmatgiz, Moscow, 1972) [in Russian].

    Google Scholar 

  3. N. V. Ioffe, N. V. Kalinin, and E. D. Éĭdel’man, Pis’ma Zh. Tekh. Fiz. 2(9), 395 (1976) [Tech. Phys. Lett. 2, 153 (1976)].

    Google Scholar 

  4. V. A. Saranin, Magn. Gidrodinam., No. 1, 85 (1983).

  5. E. D. Éĭdel’man, Zh. Éksp. Teor. Fiz. 103, 1633 (1993) [JETP 76, 802 (1993)].

    Google Scholar 

  6. B. L. Smorodin. G. Z. Gershuni, and M. G. Velarde, Int. J. Heat Mass Transfer 42, 3159 (1999).

    Article  MATH  Google Scholar 

  7. B. L. Smorodin, Pis’ma Zh. Tekh. Fiz. 22(3), 1 (1996) [Tech. Phys. Lett. 22, 177 (1996)].

    Google Scholar 

  8. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Eguations (McGraw-Hill, New York, 1955).

    Google Scholar 

  9. B. L. Smorodin and M. G. Velarde, J. Electrost. 50, 205 (2001).

    Article  Google Scholar 

  10. R. Stannarius, J. Heuer, and T. John, Phys. Rev. E 72, 066 218 (2005).

  11. M. Cutler, Liquid Semiconductors (Academic, New York, 1977).

    Google Scholar 

  12. C. W. Lan and C. C. Ting, J. Cryst. Growth 149, 175 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Smorodin.

Additional information

Original Russian Text © A.V. Belyaev, B.L. Smorodin, 2008, published in Pis’ma v Zhurnal Tekhnicheskoĭ Fiziki, 2008, Vol. 34, No. 5, pp. 79–86.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belyaev, A.V., Smorodin, B.L. Thermoelectric convection in a variable temperature field. Tech. Phys. Lett. 34, 217–220 (2008). https://doi.org/10.1134/S1063785008030127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785008030127

PACS numbers

Navigation