Skip to main content
Log in

Effect of inductive-plasma UV preionization on the parameters of XeCl laser radiation

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

A XeCl laser with a double plasma electrode providing automated inductive-plasma UV preionization has been experimentally studied. Ways to increase the laser efficiency by selecting a proper regime of excitation of the active medium based on various buffer gases (helium, argon, and neon) are considered, depending on the parameters of a two-stage pumping source. It is shown that the scheme of pumping with an inductive-plasma UV preionization source is effective only with a XeCl laser using neon as a buffer gas excited in a fast regime, which can provide a significant increase in the energy parameters of output radiation and, accordingly, in the laser output efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Yu. Baranov, V. M. Borisov, and O. B. Khristoforov, Kvantovaya Élektron. (Moscow) 8, 165 (1981).

    Google Scholar 

  2. Yu. I. Bychkov, S. V. Mel’chenko, V. F. Tarasenko, et al., Kvantovaya Élektron. (Moscow) 9, 1481 (1982).

    Google Scholar 

  3. Yu. I. Bychkov, S. V. Mel’chenko, G. A. Mesyats, et al., Kvantovaya Élektron. (Moscow) 9, 2423 (1982).

    Google Scholar 

  4. V. S. Verkhovskii and A. I. Fedorov, USSR Inventor’s Certificate No. 1477203 (1987).

  5. A. I. Fedorov, B. A. Zhunusov, and S. I. Tikhomirov, USSR Inventor’s Certificate No. 4625964/31-25 (1988).

  6. V. M. Borisov, D. N. Molchanov, E. A. Morozov, et al., Kvantovaya Élektron. (Moscow) 16, 2170 (1989).

    Google Scholar 

  7. Pulsed Light Sources, Ed. by I. S. Marshak (Énergiya, Moscow, 1978; Plenum, New York, 1984).

    Google Scholar 

  8. S. N. Rukin, Prib. Tekh. Éksp., No. 4, 5 (1999).

  9. E. Kh. Baksht, A. N. Panchenko, and V. F. Tarasenko, Kvantovaya Élektron. (Moscow) 30, 506 (2000).

    Article  Google Scholar 

  10. W. H. Long, J. Plummer, E. A. Stapperts, et al., Appl. Phys. Lett. 43, 735 (1983).

    Article  ADS  Google Scholar 

  11. A. M. Razhev, A. I. Shedrin, A. G. Kalyuzhnaya, et al., Kvantovaya Élektron. (Moscow) 34, 901 (2004).

    Article  Google Scholar 

  12. A. I. Fedorov, Doctoral Dissertation (Novosibirsk, 2002).

  13. R. S. Tayler, Appl. Phys. B 41, 1 (1986).

    Article  ADS  Google Scholar 

  14. N. G. Basov, E. P. Glotov, V. A. Danilychev, et al., Pis’ma Zh. Tekh. Fiz. 5, 449 (1979) [Sov. Tech. Phys. Lett. 5, 183 (1979)].

    Google Scholar 

  15. J. I. Levatter and S. S. Lin, J. Appl. Phys. 51, 210 (1980).

    Article  ADS  Google Scholar 

  16. A. I. Fedorov and S. I. Mel’chenko, Zh. Tekh. Fiz. 60(4), 105 (1990) [Sov. Phys. Tech. Phys. 35, 463 (1990)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Fedorov.

Additional information

Original Russian Text © A.I. Fedorov, 2007, published in Pis’ma v Zhurnal Tekhnicheskoĭ Fiziki, 2007, Vol. 33, No. 16, pp. 10–18.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorov, A.I. Effect of inductive-plasma UV preionization on the parameters of XeCl laser radiation. Tech. Phys. Lett. 33, 678–681 (2007). https://doi.org/10.1134/S1063785007080160

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785007080160

PACS numbers

Navigation