Converting harmonic oscillations into chaos


A new simple model of a system with chaotic dynamics, based on the equations of bistable systems, is considered. The possibility of converting harmonic signals into chaotic oscillations, which represent intermittent irregular and switching quasi-regular motions, is demonstrated by numerical methods. The mechanism of chaotization is analyzed using the results of numerical calculations.

This is a preview of subscription content, access via your institution.


  1. 1.

    A. S. Dmitriev and A. I. Panas, Dynamical Chaos: New Information Media for Communication Systems (Fizmatlit, Moscow, 2002) [in Russian].

    Google Scholar 

  2. 2.

    S. P. Kuznetsov, Dynamic Chaos, in Modern Theory of Vibrations and Waves Series (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  3. 3.

    G. N. Kal’yanov and E. V. Kal’yanov, Pis’ma Zh. Tekh. Fiz. 31(24), 45 (2005) [Tech. Phys. Lett. 31, 1058 (2005)].

    Google Scholar 

  4. 4.

    T. Matsumoto, L. O. Chua, and S. Tonaka, Phys. Rev. A 30, 1155 (1984).

    Article  ADS  Google Scholar 

  5. 5.

    E. V. Kal’yanov, Pis’ma Zh. Tekh. Fiz. 30(13), 45 (2004) [Tech. Phys. Lett. 30, 633 (2004)].

    Google Scholar 

Download references

Author information



Additional information

Original Russian Text © Ér.V. Kal’yanov, 2007, published in Pis’ma v Zhurnal Tekhnicheskoĭ Fiziki, 2007, Vol. 33, No. 11, pp. 1–7.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kal’yanov, É.V. Converting harmonic oscillations into chaos. Tech. Phys. Lett. 33, 451–453 (2007).

Download citation

PACS numbers

  • 05.45.-a