Skip to main content
Log in

Gas evolution during the explosive fragmentation of ice

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

It is possible in principle that hydrogen and oxygen can evolve during the explosive instability of ice leading to its disintegration into micro-and nanofragments, which takes place under the conditions of strong nonuniform compression in the region of high pressures. The nature of the anticipated phenomenon can be related to the electron-and ion-induced sputtering and dissociation of nanodimensional ice fragments. Electrons and ions can be generated in the course of an explosive instability in ice, which is developed as a result of fractoemission, triboemission, and secondary electron emission. The yield Y of hydrogen, oxygen, and related radicals is expected to depend as YP 2 on the threshold pressure P at which the explosive instability of ice is manifested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. G. Fateev, Pis’ma Zh. Éksp. Teor. Fiz. 73, 482 (2001) [JETP Lett. 73, 432 (2001)].

    Google Scholar 

  2. P. W. Bridgman, Phys. Rev 48, 825 (1935).

    Article  ADS  Google Scholar 

  3. V. T. Fedorov and Kh. B. Khokonov, Dokl. Akad. Nauk SSSR 300, 1126 (1988) [Sov. Phys. Dokl. 33, 463 (1988)].

    Google Scholar 

  4. B. V. Deryagin, N. A. Krotova, and V. P. Smilga, Adhesion of Solid (Nauka, Moscow, 1973; Consultants Bureau, New York, 1978).

    Google Scholar 

  5. M. I. Molotskii and S. Z. Shmurak, Phys. Status Solidi A 120, 83 (1990).

    Google Scholar 

  6. M. I. Molotskiĭ and V. B. Malyugin, Fiz. Tverd. Tela (Leningrad) 25, 2892 (1983) [Sov. Phys. Solid State 25, 1668 (1983)].

    Google Scholar 

  7. K. Biedrzycki and J. Madar, and B. Sujak, Radiat. Prot. Dosim. 4, 247 (1983).

    Google Scholar 

  8. D. A. Fifolt, V. F. Petrenko, and E. M. Schulson, Phil. Mag. B 67, 289 (1993).

    Google Scholar 

  9. Y. Mizuno and T. Mizuno, Can. J. Phys. 81, 71 (2003).

    Article  ADS  Google Scholar 

  10. T. I. Quickenden, B. J. Selby, and C. G. Freeman, J. Phys. Chem. A 102, 6713 (1998).

    Article  Google Scholar 

  11. T. Ya. Gorazdovskiĭ, Pis’ma Zh. Éksp. Teor. Fiz. 5, 78 (1967) [JETP Lett. 5, 64 (1967)].

    Google Scholar 

  12. M. A. Yaroslavskiĭ, Rheological Explosion (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  13. Solid under Pressure, Ed. by W. Paul and D. M. Warshaner (McGraw-Hill, New York, 1963).

    Google Scholar 

  14. J. T. Dickinson, E. E. Donaldson, and M. K. Park, J. Mater. Sci. 16, 2897 (1981).

    Article  Google Scholar 

  15. G. A. Kimmel and T. M. Orlando, Phys. Rev. Lett. 77, 3983 (1996).

    Article  ADS  Google Scholar 

  16. G. R. Floyd and R. H. Prince, Nature 240, 345 (1972).

    Article  Google Scholar 

  17. M. Michaud, A. Wen, and L. Sanche, Radiat. Res. 159, 3 (2003).

    Article  Google Scholar 

  18. R. A. Baragiola, R. A. Vidal, W. Svendsen, et al., Nucl. Instrum. Methods Phys. Res. B 209, 294 (2003).

    Article  ADS  Google Scholar 

  19. M. I. Molotskiĭ, Fiz. Tverd. Tela (Leningrad) 19, 642 (1977) [Sov. Phys. Solid State 19, 374 (1977)].

    Google Scholar 

  20. J. Herring, A. Aleksandrov, and T. M. Orlando, Phys. Rev. Lett. 92, 187602 (2004).

    Google Scholar 

  21. M. T. Sieger, W. C. Simpson, and T. M. Orlando, Natura 394, 554 (1998).

    Article  ADS  Google Scholar 

  22. W. L. Brown, L. J. Lanzerotti, J. M. Poate, et al., Phys. Rev. Lett. 40, 1072 (1978).

    Google Scholar 

  23. G. A. Kimmel, T. M. Orlando, P. Cloutier, et al., J. Phys. Chem. B 101, 6301 (1997).

    Article  Google Scholar 

  24. M. Shi, D. E. Grosjean, J. Schou, et al., Nucl. Instrum. Methods Phys. Res. B 96, 524 (1995).

    Article  ADS  Google Scholar 

  25. A. Bar-Nun, G. Herman, M. L. Rappaport, et al., Surf. Sci. 150, 234 (1985).

    Article  Google Scholar 

  26. W. L. Brown, W. M. Augustyniak, L. J. Lanzerotti, et al., Phys. Rev. Lett. 45, 1632 (1980).

    Article  ADS  Google Scholar 

  27. E. A. Brener, H. Müller-Krumbhaar, and R. Spatschek, Phys. Rev. Lett. 86, 1291 (2001).

    Article  ADS  Google Scholar 

  28. N. H. Flether, The Chemical Physics of Ice (Cambridge Univ. Press, Cambridge, 1970).

    Google Scholar 

  29. A. P. Radliński, E. Z. Radlińska, M. Agamalian, et al., Phys. Rev. Lett. 82, 3078 (1999).

    Article  ADS  Google Scholar 

  30. M. Arakawa, Icarus 142, 34 (1999).

    Article  ADS  Google Scholar 

  31. H. Kimura and I. Mann, Earth, Planets, Space 51, 1223 (1999).

    ADS  Google Scholar 

  32. L. Scudiero, J. T. Dickinson, and Y. Enomoto, Phys. Chem. Miner. 25, 566 (1988).

    Article  ADS  Google Scholar 

  33. B. C. Garrett, D. A. Dixon, D. M. Camaioni, et al., Chem. Rev. 105, 355 (2005).

    Article  Google Scholar 

  34. E. G. Fateev, Zh. Tekh. Fiz. 75(2), 53 (2005) [Tech. Phys. 50, 193 (2005)].

    Google Scholar 

  35. K. Nakayama, H. Hashimoto, and T. Susuki, J. Phys. D 25, 303 (1992).

    Article  ADS  Google Scholar 

  36. N. Timneanu, C. Caleman, J. Hajdu, et al., Chem. Phys. 299, 277 (2004).

    Article  Google Scholar 

  37. P. Yu. Butyagin, Usp. Khim. 53, 1769 (1984).

    Google Scholar 

  38. V. V. Boldyrev, Izv. Akad. Nauk SSSR, Ser. Khim., No. 10, 2228 (1990).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.G. Fateev, 2006, published in Pis’ma v Zhurnal Tekhnicheskoĭ Fiziki, 2006, Vol. 32, No. 23, pp. 15–24.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fateev, E.G. Gas evolution during the explosive fragmentation of ice. Tech. Phys. Lett. 32, 1006–1010 (2006). https://doi.org/10.1134/S1063785006120030

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785006120030

PACS numbers

Navigation