Skip to main content
Log in

Simulation of partial discharge activity in solid dielectrics under AC voltage

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

A model describing the main stochastic properties of partial discharges (PDs) under alternating-current (ac) voltage is proposed. PDs corresponding to microdischarges in small voids randomly distributed in a solid insulator are considered. The PD initiation is simulated using a stochastic criterion. The decay of plasma in a void and the resulting drop in the conductivity until complete vanishing are described using a simple threshold criterion. Computer simulations show that, upon the application of ac voltage to the electrodes, short current pulses are observed in the external circuit, with each peak corresponding to a microdischarge (PD) in the void.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bartnikas and J. P. Novak, IEEE Trans. Electr. Insul. 28, 956 (1993).

    Article  Google Scholar 

  2. F. H. Kreuger, E. Gulski, and A. Krivda, IEEE Trans. Electr. Insul. 28, 917 (1993).

    Article  Google Scholar 

  3. L. Niemeyer, IEEE Trans. Dielectr. Electr. Insul. 2, 510 (1995).

    Article  Google Scholar 

  4. R. J. Van Brunt, IEEE Trans. Electr. Insul. 26, 902 (1991).

    Article  Google Scholar 

  5. Suwarno, Y. Suzuoki, F. Komori, and T. Mizutani, J. Phys. D 29, 2922 (1996).

    Article  ADS  Google Scholar 

  6. M. D. Noskov, A. S. Malinovski, M. Sack, and A. J. Schwab, IEEE Trans. Dielectr. Electr. Insul. 7, 725 (2000).

    Article  Google Scholar 

  7. M. D. Noskov, A. S. Malinovskii, M. Sack, and A. J. Schwab, Zh. Tekh. Fiz. 72(2), 121 (2002) [Tech. Phys. 47, 260 (2002)].

    Google Scholar 

  8. A. Gemant and W. von Philipoff, Z. Tech. Phys. (Leipzig) 13, 425 (1932).

    Google Scholar 

  9. M. Hikita, K. Yamada, A. Nakamura, et al., IEEE Trans. Electr. Insul. 25, 453 (1990).

    Article  Google Scholar 

  10. D. P. Agoris and N. D. Hatziargyriou, IEE Proc. A: Sci., Meas. Technol. 140(2), 131 (1993).

    Article  Google Scholar 

  11. B. Fruth and L. Niemeyer, IEEE Trans. Electr. Insul. 27, 60 (1992).

    Article  Google Scholar 

  12. F. Gutfleisch and L. Niemeyer, IEEE Trans. Dielectr. Electr. Insul. 2, 729 (1995).

    Article  Google Scholar 

  13. C. Heitz, J. Phys. D 32, 1012 (1999).

    Article  ADS  Google Scholar 

  14. T. Okamoto, T. Kato, Y. Yokomizu, and Y. Suzuoki, Electr. Eng. Jpn. 136, 16 (2001).

    Article  Google Scholar 

  15. A. Cavallini and G. C. Montanari, IEEE Trans. Dielectr. Electr. Insul. (2006) (in press).

  16. K. Wu, Y. Suzuoki, and L. A. Dissado, J. Phys. D 37, 1815 (2004).

    Article  ADS  Google Scholar 

  17. P. H. F. Morshuls and F. H. Kreuger, J. Phys. D 23, 1562 (1990).

    Article  ADS  Google Scholar 

  18. D. I. Karpov and A. L. Kupershtokh, in Proceedings of the IEEE International Symposium on Electrical Insulation, Arlington, USA, 1998, Vol. 2, pp. 607–610.

  19. A. L. Kupershtokh, V. Charalambakos, D. Agoris, and D. I. Karpov, J. Phys. D 34, 936 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.L. Kupershtokh, C.P. Stamatelatos, D.P. Agoris, 2006, published in Pis’ma v Zhurnal Tekhnicheskoĭ Fiziki, 2006, Vol. 32, No. 15, pp. 74–81.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kupershtokh, A.L., Stamatelatos, C.P. & Agoris, D.P. Simulation of partial discharge activity in solid dielectrics under AC voltage. Tech. Phys. Lett. 32, 680–683 (2006). https://doi.org/10.1134/S106378500608013X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378500608013X

PACS numbers

Navigation