Skip to main content
Log in

Relationship between quasi-threshold and thresholdless auger recombination processes in InAs/GaAs quantum dots

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The principal mechanisms of the nonradiative (Auger) recombination of nonequilibrium charge carriers in semiconductor heterostructures with quantum dots (QDs) are considered. It is shown that the Auger recombination process in QDs can proceed, in addition to a threshold mechanism, by means of two other substantially different mechanisms—thresholdless and quasi-threshold—and either of these can predominate, depending on the QD size. For a QD radius of ∼30 Å, the probability of Auger recombination is comparable with that of radiative recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Abakumov, V. I. Perel, and I. N. Yassievich, Nonradiative Recombination in Semiconductors (North-Holland, Amsterdam, 1991; Inst. Yadern. Fiz. RAN, St. Petersburg, 1997).

    Google Scholar 

  2. G. P. Agrawal and N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand-Reinhold, New York, 1993).

    Google Scholar 

  3. Quantum Well Lasers, Ed. by P. S. Zory, Jr. (Academic, New York, 1993).

    Google Scholar 

  4. A. R. Beattie and P. T. Landsberg, Proc. R. Soc. London, Ser. A 249, 16 (1959).

    Article  ADS  Google Scholar 

  5. B. L. Gelmont, Zh. Éksp. Teor. Fiz. 75, 536 (1978) [Sov. Phys. JETP 48, 258 (1978)].

    Google Scholar 

  6. B. L. Gelmont and Z. N. Sokolova, Fiz. Tekh. Poluprovodn. (Leningrad) 16, 1670 (1982) [Sov. Phys. Semicond. 16, 1067 (1982)]; B. L. Gelmont, Z. N. Sokolova, and I. N. Yassievich, Fiz. Tekh. Poluprovodn. (Leningrad) 18, 1803 (1984) [Sov. Phys. Semicond. 18, 1128 (1984)]; B. L. Gelmont, Z. N. Sokolova, and V. B. Khalfin, Fiz. Tverd. Tela (Leningrad) 29, 2351 (1987) [Sov. Phys. Solid State 29, 1355 (1987)].

    Google Scholar 

  7. A. Haug, J. Phys. C 16, 4159 (1983).

    Article  ADS  Google Scholar 

  8. M. Takeshima, Phys. Rev. B 28, 2039 (1983).

    Article  ADS  Google Scholar 

  9. G. G. Zegrya and A. S. Polkovnikov, Zh. Éksp. Teor. Fiz. 113, 1491 (1998) [JETP 86, 815 (1998)].

    Google Scholar 

  10. J. L. Pan, Phys. Rev. B 46, 3977 (1992).

    Article  ADS  Google Scholar 

  11. G. G. Zegrya and V. A. Kharchenko, Zh. Éksp. Teor. Fiz. 101, 327 (1992) [Sov. Phys. JETP 74, 173 (1992)].

    Google Scholar 

  12. A. S. Polkovnikov and G. G. Zegrya, Phys. Rev. B 58, 4039 (1998).

    Article  ADS  Google Scholar 

  13. M. I. Dyakonov and V. Yu. Kachorovskii, Phys. Rev. B 49, 17130 (1989).

    Google Scholar 

  14. V. P. Evtikhiev, I. V. Kudryashov, V. E. Tokranov, and G. G. Zegrya, in Proceedings of the 23rd International Symposium on Semiconductors (ISCS-23), St. Petersburg, 1996, Ser. No. 155, p. 795.

  15. D. G. Deppe, D. L. Huffaker, Z. Zou, et al., IEEE J. Quantum Electron. 35, 1238 (1999).

    Article  Google Scholar 

  16. S. Ghosh, P. Bhattacharya, E. Stoner, et al., Appl. Phys. Lett. 79, 722 (2001).

    Article  ADS  Google Scholar 

  17. D. I. Chepic, A. L. Efros, A. I. Ekimov, et al., J. Lumin. 47, 113 (1990).

    Article  Google Scholar 

  18. A. L. Efros and M. Rosen, Phys. Rev. Lett. 78, 1110 (1997).

    Article  ADS  Google Scholar 

  19. V. A. Kharchenko and M. Rosen, J. Lumin. 70, 158 (1996).

    Article  Google Scholar 

  20. G. G. Zegrya and A. S. Polkovnikov, in Proceedings of the 2nd All-Russia Conference on Physics of Semiconductors, Moscow, 1996, Vol. 1, p. 95.

  21. E. B. Dogonkine, V. N. Golovach, A. S. Polkovnikov, et al., in Proceedings of the 8th International Symposium on Nanostructures: Physics and Technology, St. Petersburg, 2000, p. 399.

  22. I. I. Novikov, N. Yu. Gordeev, M. V. Maksimov, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 39, 507 (2005) [Semiconductors 39, 481 (2005)].

    Google Scholar 

  23. I. P. Marko, A. D. Andreev, A. R. Adams, et al., IEEE Select. Topics Quant. Electron. 9, 1300 (2003).

    Article  Google Scholar 

  24. E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957); R. A. Suris, Fiz. Tekh. Poluprovodn. (Leningrad) 20, 2008 (1986) [Sov. Phys. Semicond. 20, 1259 (1986)].

    Article  ADS  Google Scholar 

  25. L. V. Asryan and R. A. Suris, Fiz. Tekh. Poluprovodn. (St. Petersburg) 38, 3 (2004) [Semiconductors 28, 1 (2004)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.S. Shkolnik, V.P. Evtikhiev, G.G. Zegrya, 2006, published in Pis’ma v Zhurnal Tekhnicheskoĭ Fiziki, 2006, Vol. 32, No. 15, pp. 51–59.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shkolnik, A.S., Evtikhiev, V.P. & Zegrya, G.G. Relationship between quasi-threshold and thresholdless auger recombination processes in InAs/GaAs quantum dots. Tech. Phys. Lett. 32, 670–673 (2006). https://doi.org/10.1134/S1063785006080104

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785006080104

PACS numbers

Navigation