Skip to main content
Log in

Interaction of Al–C Atoms at the Aluminum–Carbon Nanoparticle Interface

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

An analytical model of the interaction between Al and C atoms at the interfaces formed by carbon nanoparticles and aluminum is proposed. The model is convenient for practical use in calculating the free energy of the interface, which is essential for nanocomposites and determines their mechanical, thermophysical, and other properties. The paper considers nanoparticles of various structures that are used in the development of aluminum matrix composites: fullerenes of various diameters, single-layer carbon nanotubes of metal and semiconductor types of various radii and chirality, graphene, and graphite. The proposed model employs the Lennard–Jones potential and approximately takes into account the effect of the local structure of the nanoparticle on the interaction of pairs of aluminum and carbon atoms using additional parameters. In this paper, we assume that the average local curvature of the nanoparticle surface determines the depth and location of the potential well. The work is supplemented with the study of interphase interaction in the framework of the density functional theory. The comparison of the results of calculations performed using approximations of various levels of accuracy is used to establish the limits of applicability of the proposed potential, and the possibility of its application in the study of interfacial interaction in nanocomposites based on aluminum and nanocarbon is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. P. Sharma, S. Ganti, and N. Bhate, Appl. Phys. Lett. 82 (4), 535 (2003).

    Article  ADS  Google Scholar 

  2. V. Reshetniak et al., Nanomaterials 12 (12), 2045 (2022).

    Article  Google Scholar 

  3. M. E. Gurtin, J. Weissmüller, and F. Larche, Philos. Mag. A 78 (5), 1093 (1998).

    Article  ADS  Google Scholar 

  4. I. G. Kaplan, Intermolecular Interactions: Physical Picture, Computational Methods and Model Potentials (Wiley, 2006).

    Book  Google Scholar 

  5. T. Liang et al., Mater. Sci. Eng., R 74 (9), 255 (2013).

  6. S. Nasiri et al., Materialia 22, 101376 (2022).

  7. V. V. Reshetniak and A. V. Aborkin, J. Exp. Theor. Phys. 130 (2), 214 (2020).

    Article  ADS  Google Scholar 

  8. V. V. Reshetnyak et al., J. Exp. Theor. Phys. 134 (1), 69 (2022).

    Article  ADS  Google Scholar 

  9. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications (Elsevier, 1996).

    Google Scholar 

  10. I. A. Evdokimov et al., Konstr. Kompoz. Mater., No. 1, 43 (2013).

  11. A. H. Larsen et al., J. Phys.: Condens. Matter 29 (27), 273002 (2017).

  12. T. D. Kühne et al., J. Chem. Phys. 152 (19), 194103 (2020). https://doi.org/10.1063/5.0007045

  13. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 (18), 3865 (1996).

    Article  ADS  Google Scholar 

  14. M. F. Peintinger, D. V. Oliveira, and T. Bredow, J. Comput. Chem. 34 (6), 451 (2013).

    Article  Google Scholar 

  15. S. Plimpton, J. Comput. Phys. 117 (1), 1 (1995).

    Article  ADS  Google Scholar 

  16. E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State 55, 1754 (2013).

    Article  ADS  Google Scholar 

  17. R. C. Haddon, Philos. Trans. R. Soc. London, Ser. A 343 (1667), 53 (1993).

  18. D. Holec et al., Phys. Rev. B 81 (23), 235403 (2010).

  19. G. Casella, A. Bagno, and G. Saielli, Phys. Chem. Chem. Phys. 15 (41), 18030 (2013).

    Article  Google Scholar 

  20. M. Shiraishi and M. Ata, Carbon 39 (12), 1913 (2001).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project FZUN-2020-0015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Reshetniak or A.V. Aborkin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Chikishev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reshetniak, V.V., Aborkin, A. Interaction of Al–C Atoms at the Aluminum–Carbon Nanoparticle Interface. Tech. Phys. (2024). https://doi.org/10.1134/S106378422470021X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S106378422470021X

Keywords:

Navigation