Skip to main content
Log in

A New Class of Exact Solutions to Magnetohydrodynamics Equations for Describing Convective Flows of Binary Fluids

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A new family of exact solutions to the equations of magnetohydrodynamics of an incompressible fluid is presented. The convective fluid flows in a rectangular Cartesian coordinate system are considered. Convection in a conducting fluid is induced by thermal factors and the solute. Thus, the announced exact solution describes thermal diffusion in magnetic fluids. Exact solutions are constructed taking into account the Soret and Dufour crossed dissipative effects. In the article, the Lin–Sidorov–Aristov class is used to construct the exact solution. The velocity field and the magnetic field are described by linear forms with respect to two spatial coordinates. Linear form coefficients depend on the third coordinate and time. The pressure, temperature and solute concentration are described by quadratic forms. A system of equations for finding unknown functions for hydrodynamic fields is given. This system is overdetermined. The article presents an exact solution for determining unknown functions describing steady Stokes flows of convection of a binary conducting fluid. When constructing the exact solution to a nonlinear system of magnetohydrodynamics, all terms for the convective derivative are assumed to be equal to zero (convective and diffusive mixing of a continuous medium is not taken into account).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. P. G. Drazin and N. Riley, The Navier–Stokes Equations: A Classification of Flows and Exact Solutions (Cambridge Univ. Press, Cambridge, 2006). https://doi.org/10.1017/cbo9780511526459

    Book  Google Scholar 

  2. G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge Univ. Press, Cambridge, 2000). https://doi.org/10.1017/CBO9780511800955

    Book  Google Scholar 

  3. S. V. Ershkov, E. Yu. Prosviryakov, N. V. Burmasheva, and V. Christianto, Fluid Dyn. Res. 53 (4), 044501 (2021). https://doi.org/10.1088/1873-7005/ac10f0

  4. G. Z. Gershuni and E. M. Zhukhovitskii, Convective Stability of Incompressible Fluids (Wiley–Keter, Jerusalem, 1976).

    Google Scholar 

  5. S. N. Aristov, D. V. Knyazev, and A. D. Polyanin, Theor. Found. Chem. Eng. 43 (5), 642 (2009). https://doi.org/10.1134/S0040579509050066

    Article  CAS  Google Scholar 

  6. V. V. Pukhnachev, Usp. Mekh. 4 (1), 6 (2006).

    Google Scholar 

  7. P. F. Neményi, Adv. Appl. Mech. 2, 123 (1951). https://doi.org/10.1016/S0065-2156(08)70300-4

    Article  MathSciNet  Google Scholar 

  8. I. S. Gromeka, Collected Works (Akad. Nauk SSSR, Moscow, 1952) [in Russian].

    Google Scholar 

  9. E. Beltrami, Rend. Inst. Lombardo Acad. Sci. Lett. 22, 121 (1889).

    Google Scholar 

  10. V. Trkal, Časopis Pěstování Math. Fys. 48 (5), 302 (1919). https://doi.org/10.21136/CPMF.1919.109099

    Article  Google Scholar 

  11. E. Yu. Prosviryakov, Vestn. Samarsk. Gos. Tekh. Univ. Ser.: Fiz.-Mat. Nauki 24 (2), 319 (2020). https://doi.org/10.14498/vsgtu1766

    Article  Google Scholar 

  12. V. P. Kovalev and E. Yu. Prosviryakov, Vestn. Samarsk. Gos. Tekh. Univ. Ser.: Fiz.-Mat. Nauki 24 (4), 762 (2020). https://doi.org/10.14498/vsgtu1814

    Article  Google Scholar 

  13. V. P. Kovalev, E. Yu. Prosviryakov, and G. B. Sizykh, Tr. Mosk. Fiz.-Tekh. Inst. 9 (1), 71 (2017).

    Google Scholar 

  14. G. B. Sizykh, Fluid Dyn. 54 (8), 1038 (2019). https://doi.org/10.1134/S0015462818060083

    Article  ADS  MathSciNet  Google Scholar 

  15. G. B. Sizykh, Russ. Math. 63 (2), 44 (2019). https://doi.org/10.3103/S1066369X19020063

    Article  MathSciNet  Google Scholar 

  16. C. C. Lin, Arch. Ration. Mech. Anal. 1, 391 (1957). https://doi.org/10.1007/BF00298016

    Article  Google Scholar 

  17. A. F. Sidorov, J. Appl. Mech. Tech. Phys. 30 (2), 197 (1989). https://doi.org/10.1007/BF00852164

    Article  ADS  MathSciNet  Google Scholar 

  18. S. N. Aristov and E. Yu. Prosviryakov, Theor. Found. Chem. Eng. 50 (3), 286 (2016). https://doi.org/10.1134/S0040579516030027

    Article  CAS  Google Scholar 

  19. A. D. Polyanin and S. N. Aristov, Theor. Found. Chem. Eng. 45 (6), 885 (2011). https://doi.org/10.1134/S0040579511060091

    Article  CAS  Google Scholar 

  20. S. N. Aristov and A. D. Polyanin, Russ. J. Math. Phys. 17 (1), 1 (2010). https://doi.org/10.1134/S1061920810010012

    Article  MathSciNet  Google Scholar 

  21. N. V. Burmasheva and E. Yu. Prosviryakov, Russ. Math. 65 (7), 8 (2021). https://doi.org/10.3103/S1066369X21070021

    Article  Google Scholar 

  22. N. V. Burmasheva and E. Yu. Prosviryakov, Izv. Irkutsk. Gos. Univ. Ser. Mat. 32, 33 (2020). https://doi.org/10.26516/1997-7670.2020.32.33

    Article  Google Scholar 

  23. N. V. Burmasheva and E. Yu. Prosviryakov, Izv. Irkutsk. Gos. Univ. Ser. Mat. 37, 17 (2021). https://doi.org/10.26516/1997-7670.2021.37.17

    Article  Google Scholar 

  24. E. Yu. Prosviryakov, Vestn. Samarsk. Gos. Tekh. Univ. Ser.: Fiz.-Mat. Nauki 22 (4), 735 (2018). https://doi.org/10.14498/vsgtu1651

    Article  Google Scholar 

  25. E. Yu. Prosviryakov, AIP Conf. Proc. 2053 (1), 020012 (2018). https://doi.org/10.1063/1.5084358

  26. O. A. Ledyankina, E. Yu. Prosviryakov, and E. V. Romanova, Russ. Aeronaut. 65, 431 (2022). https://doi.org/10.3103/S1068799822020246

    Article  Google Scholar 

  27. E. Yu. Prosviryakov and A. S. Sokolov, Tech. Phys. Lett. 48 (12), 322 (2022). https://doi.org/10.1134/S1063785022110050

    Article  ADS  CAS  Google Scholar 

  28. L. S. Goruleva and E. Yu. Prosviryakov, Opt. Spectrosc. 130 (6), 365 (2022). https://doi.org/10.1134/S0030400X22070037

    Article  ADS  CAS  Google Scholar 

  29. N. V. Burmasheva and E. Yu. Prosviryakov, Russ. J. Nonlinear Dyn. 18 (3), 397 (2022). https://doi.org/10.20537/nd220305

    Article  MathSciNet  Google Scholar 

  30. N. V. Burmasheva and E. Yu. Prosviryakov, Vestn. Samarsk. Gos. Tekh. Univ. Ser.: Fiz.-Mat. Nauki 25 (3), 491 (2021). https://doi.org/10.14498/vsgtu1860

    Article  Google Scholar 

  31. N. M. Zubarev and E. Yu. Prosviryakov, J. Appl. Mech. Tech. Phys. 60 (6), 1031 (2019). https://doi.org/10.1134/S0021894419060075

    Article  ADS  MathSciNet  Google Scholar 

  32. E. Yu. Prosviryakov, Theor. Found. Chem. Eng. 53 (1), 107 (2019). https://doi.org/10.1134/S0040579518060088

    Article  CAS  Google Scholar 

  33. E. S. Baranovskii, N. V. Burmasheva, and E. Yu. Prosviryakov, Symmetry 13 (8), 1355 (2021). https://doi.org/10.3390/sym13081355

    Article  ADS  CAS  Google Scholar 

  34. V. V. Privalova and E. Yu. Prosviryakov, Theor. Found. Chem. Eng. 56 (3), 331 (2022). https://doi.org/10.1134/S0040579522030113

    Article  CAS  Google Scholar 

  35. M. Couette, Ann. Chim. Phys. 6–21, 433 (1890).

  36. J. Poiseuille, C. R. Séances Acad. Sci. 11, 961, 1041 (1840).

    Google Scholar 

  37. J. Poiseuille, C. R. Séances Acad. Sci. 12, 112 (1841).

    Google Scholar 

  38. G. G. Stokes, Trans. Cambridge Philos. Soc. 9, 8 (1851).

    ADS  Google Scholar 

  39. N. V. Burmasheva and E. Yu. Prosviryakov, Theor. Found. Chem. Eng. 56 (5), 662 (2022). https://doi.org/10.1134/s0040579522050207

    Article  CAS  Google Scholar 

  40. V. W. Ekman, Arkiv Mat., Astron. Fys. 2 (11), 1 (1905).

    Google Scholar 

  41. K. Hiemenz, Dinglers Polytech. J. 326, 321 (1911).

    Google Scholar 

  42. Th. Kármán, Z. Angew. Math. Mech. 1 (4), 233 (1921). https://doi.org/10.1002/zamm.19210010401

    Article  Google Scholar 

  43. J. Hartmann and F. Lazarus, K. Dan. Vidensk. Selsk., Mat. 15 (6), 1 (1937).

    Google Scholar 

  44. G. A. Ostroumov, Free convection under the condition of the internal problem, NASA Technical Memorandum 1407 (Nat. Advis. Comm. Aeronaut., Washington, 1958).

  45. R. V. Birikh, J. Appl. Mech. Tech. Phys. 7 (4), 43 (1966). https://doi.org/10.1007/bf00914697

    Article  ADS  Google Scholar 

  46. M. I. Shliomis and V. I. Yakushin, Uch. Zap. Permsk. Gos. Univ. Ser. Gidrodin., No. 4, 129 (1972).

  47. V. V. Privalova, E. Yu. Prosviryakov, and M. A. Simonov, Russ. J. Nonlinear Dyn. 15 (3), 271 (2019). https://doi.org/10.20537/nd190306

    Article  MathSciNet  Google Scholar 

  48. N. V. Burmasheva and E. Yu. Prosviryakov, Uch. Zap. Kazansk. Univ. Ser. Fiz.-Mat. Nauki 164 (4), 285 (2022). https://doi.org/10.26907/2541-7746.2022.4.285-301

    Article  Google Scholar 

  49. N. V. Burmasheva, A. V. D’yachkova, and E. Yu. Prosviryakov, Vestn. Tomsk. Gos. Univ. Mat. Mekh. 77, 68 (2022). https://doi.org/10.17223/19988621/77/6

    Article  Google Scholar 

  50. S. Ershkov, N. Burmasheva, D. D. Leshchenko, and E. Yu. Prosviryakov, Symmetry 15 (9), 1730 (2023). https://doi.org/10.3390/sym15091730

    Article  ADS  Google Scholar 

  51. S. N. Aristov, V. V. Privalova, and E. Yu. Prosviryakov, Nelineinaya Din. 12 (2), 167 (2016). https://doi.org/10.20537/nd1602001

    Article  MathSciNet  Google Scholar 

  52. V. V. Privalova and E. Yu. Prosviryakov, Nelineinaya Din. 14 (1), 69 (2018). https://doi.org/10.20537/nd1801007

    Article  MathSciNet  Google Scholar 

  53. V. V. Privalova and E. Yu. Prosviryakov, Vestn. Samarsk. Gos. Tekh. Univ. Ser.: Fiz.-Mat. Nauki 22 (3), 532 (2018). https://doi.org/10.14498/vsgtu1638

    Article  Google Scholar 

  54. S. N. Aristov and K. G. Shvarts, Fluid Dyn. 48, 330 (2013). https://doi.org/10.1134/S001546281303006X

    Article  ADS  MathSciNet  CAS  Google Scholar 

  55. S. S. Vlasova and E. Yu. Prosviryakov, Russ. Aeronaut. 59 (4), 529 (2016). https://doi.org/10.3103/S1068799816040140

    Article  Google Scholar 

  56. V. K. Andreev, Ya. A. Gaponenko, O. N. Goncharova, and V. V. Pukhnachev, Mathematical Models of Convection (De Gryuter, Berlin–Boston, 2012). https://doi.org/10.1515/9783110258592

    Book  Google Scholar 

  57. V. K. Andreev and E. N. Cheremnykh, J. Sib. Fed. Univy. Math. Phys. 9 (4), 404 (2016). https://doi.org/10.17516/1997-1397-2016-9-4-404-415

    Article  Google Scholar 

  58. V. K. Andreev and E. N. Cheremnykh, J. Appl. Ind. Math. 10 (1), 7 (2016). https://doi.org/10.1134/S1990478916010026

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Prosviryakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goruleva, L., Prosviryakov, E. A New Class of Exact Solutions to Magnetohydrodynamics Equations for Describing Convective Flows of Binary Fluids. Tech. Phys. 68, 292–301 (2023). https://doi.org/10.1134/S1063784224700191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784224700191

Keywords:

Navigation