Skip to main content
Log in

Influence of Li Ions on Memristor Properties of Capacitor Structures Based on Nanocomposites (Co40Fe40B20)x(LiNbO3)100–x

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The paper reveals the influence of Li, B and the composition of metal contacts on the processes of resistive switching in memristive structures M/NC/D/M. After field exposure in structures Cu/(Co50Fe50)x(LiNbO3)100–x/s-LiNbO3/Cu/sitall, Cu/(Co50Fe50)x(LiNbO3)100–x/d-LiNbO3/Cu/sitall and Cu/(Co40Fe40B20)x(SiO2)100–x/d LiNbO3/Cu/sitall at x < 13 was detected a residual voltage (up to 16 mV) due to the electromigration of Li ions, that leading to a “reversible” type of VAC hysteresis and instability of the time dependencies of induced resistive states. In the structures of Cu/(Co40Fe40B20)x(LiNbO3)100–x/s-LiNbO3/Cu/sitall, Cr/Cu/Cr/(Co40Fe40B20)x(LiNbO3)100–x/s-LiNbO3/Cr/Cu/Cr/sitall containing B, the residual voltage is reduced by formation of chemical compounds B with percolated Li atoms. When limiting the electromigration of Li ions, the main mechanism of resistive switching is the processes of electromigration of oxygen vacancies in the dielectric oxide layer. Suppression of residual voltage in the Cr/Cu/Cr/(Co50Fe50)x(LiNbO3)100–x/s-LiNbO3/Cr/Cu/Cr/sitall structure due to the introduction of a Cr buffer layer that does not dissolve Li leads to the absence of bipolar resistive switching in these structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. C. Li, M. Hu, Yu. Li, H. Jiang, N. Ge, E. Montgomery, Jm. Zhang, Wh. Song, N. Davila, C. Graves, Zh. Li, J. Strachan, P. Lin, Z. Wang, M. Barnell, Q. Wu, R. Williams, J. Yang, Qf. Xia. Nature Electr., 1, 52 (2018). https://doi.org/10.1038/s41928-017-0002-z

    Article  Google Scholar 

  2. I. N. Antonov, A. I. Belov, A. N. Mikhaylov, O. A. Morozov, P. E. Ovchinnikov. J. Commun. Technol. Electron., 63 (8), 950 (2018). https://doi.org/10.1134/S106422691808003X

    Article  Google Scholar 

  3. A. Serb, J. Bill, A. Khiat, R. Berdan, R. Legenstein, T. Prodromakis. Nat. Commun., 7, 12611 (2016). https://doi.org/10.1038/ncomms12611

    Article  ADS  Google Scholar 

  4. V. A. Demin, V. V. Erokhin, A. V. Emelyanov, S. Battistoni, G. Baldi, S. Iannotta, P. K. Kashkarov, M. V. Kovalchuk. Organic Electron., 25, 16 (2015). https://doi.org/10.1016/j.orgel.2015.06.015

    Article  Google Scholar 

  5. A. V. Emelyanov, D. A. Lapkin, V. A. Demin, V. V. Erokhin, S. Battistoni, G. Baldi, A. Dimonte, A. N. Korovin, S. Iannotta, P. K. Kashkarov, M. V. Kovalchuk. AIP Advances, 6, 111301 (2016). https://doi.org/10.1063/1.4966257

  6. K. E. Nikirui, A. V. Yemelyanov, V. V. Rylkov, A. V. Sitnikov, V. A. Demin. Pisma v ZhTF, 45 (8), 19 (2019) (in Russian).

    Google Scholar 

  7. D. Ielmini. Semicond. Sci. Technol., 31, 063002 (2016). https://doi.org/10.1088/0268-1242/31/6/063002

  8. J. S. Lee, S. Lee, T. W. Noh. Appl. Phys. Rev., 2 (3), 031303 (2015). https://doi.org/10.1063/1.4929512

  9. J. J. Yang, D. B. Strukov, D. R. Stewart. Nature Nanotech., 8, 13 (2013). https://doi.org/10.1038/nnano.2012.240

    Article  ADS  Google Scholar 

  10. V. V. Rylkov, S. N. Nikolaev, V. A. Demin, A. V. Emelyanov, A. V. Sitnikov, K. E. Nikiruy, V. A. Levanov, M. Yu. Presnyakov, A. N. Taldenkov, A. L. Vasiliev, K. Yu. Chernoglazov, A. S. Vedeneev, Yu. E. Kalinin, A. B. Granovsky, V. V. Tugushev, A. S. Bugaev. J. Exp. Theor. Phys., 126, 353 (2018). https://doi.org/10.1134/S1063776118020152

    Article  ADS  Google Scholar 

  11. V. A. Levanov, A. V. Emelyanov, V. A. Demin, K. E. Nikirui, A. V. Sitnikov, S. N. Nikolaev, A. S. Vedeneev, Yu. E. Kalinin, V. V. Rylkov. J. Commun. Technol. Electron., 63 (5), 491 (2018). https://doi.org/10.1134/S1064226918050078

    Article  Google Scholar 

  12. K. E. Nikiruy, A. V. Emelyanov, V. A. Demin, V. V. Rylkov, A. V. Sitnikov, P. K. Kashkarov. Tech. Phys. Lett., 44, 416 (2018). https://doi.org/10.1134/S106378501805022X

    Article  ADS  Google Scholar 

  13. V. V. Rylkov, A. V. Sitnikov, S. N. Nikolaev, V. A. Demin, A. N. Taldenkov, M. Yu. Presnyakov, A. V. Emelyanov, A. L. Vasiliev, Yu. E. Kalinin, A. S. Bugaev, V. V. Tugushev, A. B. Granovsky. JMMM, 459, 197 (2018). https://doi.org/10.1016/j.jmmm.2017.11.022

    Article  ADS  Google Scholar 

  14. V. V. Rylkov, S. N. Nikolaev, K. Y. Chernoglazov, V. A. Demin, M. Yu. Presnyakov, A. L. Vasiliev, V. V. Tugushev, A. B. Granovsky, A. V. Sitnikov, Yu. E. Kalinin, N. S. Perov, A. S. Vedeneev. Phys. Rev. B, 95 (14), 144202 (2017). https://doi.org/10.1103/PhysRevB.95.144202

  15. A. V. Sitnikov, I. V. Babkina, Y. E. Kalinin, A. E. Nikonov, M. N. Kopytin, A. R. Shakurov, O. I. Remizova, L. I. Yanchenko. ZhTF, 92 (9), 1382 (2022) (in Russian). https://doi.org/10.21883/JTF.2022.09.52930.94-22

  16. Yu. E. Kalinin, A. N. Remizov, A. V. Sitnikov. Phys. Solid State, 46 (11), 2146 (2004). https://doi.org/10.1134/1.1825563

    Article  ADS  Google Scholar 

  17. N. Domracheva, M. Caporali, E. Rentschler. Novel Magnetic Nanostructures: Unique Properties and Applications (Elsevier, 2018).

    Google Scholar 

  18. I. A. Kedrinsky, V. G. Yakovlev. Li-ion accumulators (Platan, Krasnoyarsk, 2002).

    Google Scholar 

  19. J. Rahn, E. Hüger, L. Dörrer, B. Ruprecht, P. Heitjans, H. Schmidt. Z. Phys. Chem., 226, 439 (2012). .https://doi.org/10.1524/zpch.2012.0214

    Article  Google Scholar 

  20. N. P. Lyakisheva. Diagrammy sostoyaniya dvoynykh metallicheskikh sistem (Mashinostroenie, M., 1997).

  21. R. Rupp, B. Caerts, A. Vantomme, J. Fransaer, A. Vlad. J. Phys. Chem. Lett., 10, 5206 (2019). https://doi.org/10.1021/acs.jpclett.9b02014

    Article  Google Scholar 

  22. D. M. Gruen, A. R. Krauss, S. Susman, M. Venugopalan, M. Ron. J. Vac. Sci. Technol., 1 (2), 924 (1983). https://doi.org/10.1116/1.572152

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The paper was carried out with the financial support from the Russian Science Foundation, grant no. 22-19-00171.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Shakurov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Y. Deineka

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitnikov, A.V., Kalinin, Y.E., Babkina, I.V. et al. Influence of Li Ions on Memristor Properties of Capacitor Structures Based on Nanocomposites (Co40Fe40B20)x(LiNbO3)100–x. Tech. Phys. 69, 2133–2140 (2024). https://doi.org/10.1134/S1063784224070442

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784224070442

Keywords:

Navigation