Abstract
The paper reveals the influence of Li, B and the composition of metal contacts on the processes of resistive switching in memristive structures M/NC/D/M. After field exposure in structures Cu/(Co50Fe50)x(LiNbO3)100–x/s-LiNbO3/Cu/sitall, Cu/(Co50Fe50)x(LiNbO3)100–x/d-LiNbO3/Cu/sitall and Cu/(Co40Fe40B20)x(SiO2)100–x/d LiNbO3/Cu/sitall at x < 13 was detected a residual voltage (up to 16 mV) due to the electromigration of Li ions, that leading to a “reversible” type of VAC hysteresis and instability of the time dependencies of induced resistive states. In the structures of Cu/(Co40Fe40B20)x(LiNbO3)100–x/s-LiNbO3/Cu/sitall, Cr/Cu/Cr/(Co40Fe40B20)x(LiNbO3)100–x/s-LiNbO3/Cr/Cu/Cr/sitall containing B, the residual voltage is reduced by formation of chemical compounds B with percolated Li atoms. When limiting the electromigration of Li ions, the main mechanism of resistive switching is the processes of electromigration of oxygen vacancies in the dielectric oxide layer. Suppression of residual voltage in the Cr/Cu/Cr/(Co50Fe50)x(LiNbO3)100–x/s-LiNbO3/Cr/Cu/Cr/sitall structure due to the introduction of a Cr buffer layer that does not dissolve Li leads to the absence of bipolar resistive switching in these structures.
REFERENCES
C. Li, M. Hu, Yu. Li, H. Jiang, N. Ge, E. Montgomery, Jm. Zhang, Wh. Song, N. Davila, C. Graves, Zh. Li, J. Strachan, P. Lin, Z. Wang, M. Barnell, Q. Wu, R. Williams, J. Yang, Qf. Xia. Nature Electr., 1, 52 (2018). https://doi.org/10.1038/s41928-017-0002-z
I. N. Antonov, A. I. Belov, A. N. Mikhaylov, O. A. Morozov, P. E. Ovchinnikov. J. Commun. Technol. Electron., 63 (8), 950 (2018). https://doi.org/10.1134/S106422691808003X
A. Serb, J. Bill, A. Khiat, R. Berdan, R. Legenstein, T. Prodromakis. Nat. Commun., 7, 12611 (2016). https://doi.org/10.1038/ncomms12611
V. A. Demin, V. V. Erokhin, A. V. Emelyanov, S. Battistoni, G. Baldi, S. Iannotta, P. K. Kashkarov, M. V. Kovalchuk. Organic Electron., 25, 16 (2015). https://doi.org/10.1016/j.orgel.2015.06.015
A. V. Emelyanov, D. A. Lapkin, V. A. Demin, V. V. Erokhin, S. Battistoni, G. Baldi, A. Dimonte, A. N. Korovin, S. Iannotta, P. K. Kashkarov, M. V. Kovalchuk. AIP Advances, 6, 111301 (2016). https://doi.org/10.1063/1.4966257
K. E. Nikirui, A. V. Yemelyanov, V. V. Rylkov, A. V. Sitnikov, V. A. Demin. Pisma v ZhTF, 45 (8), 19 (2019) (in Russian).
D. Ielmini. Semicond. Sci. Technol., 31, 063002 (2016). https://doi.org/10.1088/0268-1242/31/6/063002
J. S. Lee, S. Lee, T. W. Noh. Appl. Phys. Rev., 2 (3), 031303 (2015). https://doi.org/10.1063/1.4929512
J. J. Yang, D. B. Strukov, D. R. Stewart. Nature Nanotech., 8, 13 (2013). https://doi.org/10.1038/nnano.2012.240
V. V. Rylkov, S. N. Nikolaev, V. A. Demin, A. V. Emelyanov, A. V. Sitnikov, K. E. Nikiruy, V. A. Levanov, M. Yu. Presnyakov, A. N. Taldenkov, A. L. Vasiliev, K. Yu. Chernoglazov, A. S. Vedeneev, Yu. E. Kalinin, A. B. Granovsky, V. V. Tugushev, A. S. Bugaev. J. Exp. Theor. Phys., 126, 353 (2018). https://doi.org/10.1134/S1063776118020152
V. A. Levanov, A. V. Emelyanov, V. A. Demin, K. E. Nikirui, A. V. Sitnikov, S. N. Nikolaev, A. S. Vedeneev, Yu. E. Kalinin, V. V. Rylkov. J. Commun. Technol. Electron., 63 (5), 491 (2018). https://doi.org/10.1134/S1064226918050078
K. E. Nikiruy, A. V. Emelyanov, V. A. Demin, V. V. Rylkov, A. V. Sitnikov, P. K. Kashkarov. Tech. Phys. Lett., 44, 416 (2018). https://doi.org/10.1134/S106378501805022X
V. V. Rylkov, A. V. Sitnikov, S. N. Nikolaev, V. A. Demin, A. N. Taldenkov, M. Yu. Presnyakov, A. V. Emelyanov, A. L. Vasiliev, Yu. E. Kalinin, A. S. Bugaev, V. V. Tugushev, A. B. Granovsky. JMMM, 459, 197 (2018). https://doi.org/10.1016/j.jmmm.2017.11.022
V. V. Rylkov, S. N. Nikolaev, K. Y. Chernoglazov, V. A. Demin, M. Yu. Presnyakov, A. L. Vasiliev, V. V. Tugushev, A. B. Granovsky, A. V. Sitnikov, Yu. E. Kalinin, N. S. Perov, A. S. Vedeneev. Phys. Rev. B, 95 (14), 144202 (2017). https://doi.org/10.1103/PhysRevB.95.144202
A. V. Sitnikov, I. V. Babkina, Y. E. Kalinin, A. E. Nikonov, M. N. Kopytin, A. R. Shakurov, O. I. Remizova, L. I. Yanchenko. ZhTF, 92 (9), 1382 (2022) (in Russian). https://doi.org/10.21883/JTF.2022.09.52930.94-22
Yu. E. Kalinin, A. N. Remizov, A. V. Sitnikov. Phys. Solid State, 46 (11), 2146 (2004). https://doi.org/10.1134/1.1825563
N. Domracheva, M. Caporali, E. Rentschler. Novel Magnetic Nanostructures: Unique Properties and Applications (Elsevier, 2018).
I. A. Kedrinsky, V. G. Yakovlev. Li-ion accumulators (Platan, Krasnoyarsk, 2002).
J. Rahn, E. Hüger, L. Dörrer, B. Ruprecht, P. Heitjans, H. Schmidt. Z. Phys. Chem., 226, 439 (2012). .https://doi.org/10.1524/zpch.2012.0214
N. P. Lyakisheva. Diagrammy sostoyaniya dvoynykh metallicheskikh sistem (Mashinostroenie, M., 1997).
R. Rupp, B. Caerts, A. Vantomme, J. Fransaer, A. Vlad. J. Phys. Chem. Lett., 10, 5206 (2019). https://doi.org/10.1021/acs.jpclett.9b02014
D. M. Gruen, A. R. Krauss, S. Susman, M. Venugopalan, M. Ron. J. Vac. Sci. Technol., 1 (2), 924 (1983). https://doi.org/10.1116/1.572152
ACKNOWLEDGMENTS
The paper was carried out with the financial support from the Russian Science Foundation, grant no. 22-19-00171.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflict of interest.
Additional information
Translated by Y. Deineka
Publisher’s Note.
Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sitnikov, A.V., Kalinin, Y.E., Babkina, I.V. et al. Influence of Li Ions on Memristor Properties of Capacitor Structures Based on Nanocomposites (Co40Fe40B20)x(LiNbO3)100–x. Tech. Phys. 69, 2133–2140 (2024). https://doi.org/10.1134/S1063784224070442
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063784224070442