Skip to main content
Log in

Radar Absorbing and Shielding Characteristics in Ferrite-Polymer Composites Mn-Zn Ferrite/P (TFE-VDF)

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

the article discusses the electromagnetic absorbing and shielding properties of ferrite-polymer composites of the composition Mn–Zn ferrite/fluoroplast-42, obtained by pressing a mixture of powders with heating. The measurement of the complex magnetic and dielectric permittivity spectra, as well as the reflection coefficient spectra was carried out in the frequency range 0.1–7 GHz. Using the obtained spectra, a comprehensive analysis of the absorbing characteristics of the composites was carried out, and the factors responsible for the absorption were determined. Fitting of the composites magnetic permeability spectra show that the process of natural ferromagnetic resonance prevails over the resonance of domain walls, and a decrease in the concentration of ferrite inclusions leads to a significant shift in the frequency of natural ferromagnetic resonance to high frequencies. It was found that for composites with a thickness of 5–10 mm, compositions with a mass fraction of ferrite ≤ 0.4 show radio-absorbing properties, while compositions with a fraction of ≥0.6 show shielding properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Yu. M. Spodobaev, V. P. Kubanov. Osnovy elektromagnitnoi ekologii (Radio i svyaz, M., 2000) (in Russian).

  2. P. Thakur, D. Chahar, S. Taneja N. Bhalla, A. Thakur. Ceram. Int., 46, 15740 (2020). https://doi.org/10.1016/j.ceramint.2020.03.287

    Article  CAS  PubMed  Google Scholar 

  3. D. Kumar, A. Moharana, A. Kumar. Mater. Today Chem., 17, 100346 (2020). https://doi.org/10.1016/j.mtchem.2020.100346

  4. X. Zeng, X. Cheng, R. Yu, G. D. Stucky. Carbon, 168, 606 (2020). https://doi.org/10.1016/J.Carbon.2020.07.028

    Article  CAS  Google Scholar 

  5. K. Shimada, K. Ishizuka, M. Tokuda. Progr. In Electromagnetics Research Symposium (Cambridge, USA, 2006, March 26-29), p. 538.

  6. V. G. Kostishin, R. M. Vergazov, S. B. Men’shova, I. M. Isaev, A. V. Timofeev. Zavodskaya laboratoriya. Diagnostika materi- alov, 87 (1), 30 (2021) (in Russian). https://doi.org/10.26896/1028-6861-2021-87-1-30-34

  7. V. G. Kostishin, R. M. Vergazov, S. B. Men’shova, I. M. Isaev. Ross. tekhnol. zhurn., 8 (6), 87 (2020) (in Russian). https://doi.org/10.32362/2500-316X-2020-8-6-87-108

  8. I. M. Isaev, V. G. Kostishin, V. V. Korovushkin, D. V. Salogub, R. I. Shakirzyanov, A. V. Timofeev, A. Yu. Mironovich. ZhTF, 91 (9), 1376 (2021) (in Russian). https://doi.org/10.21883/JTF.2021.09.51217.74-21

  9. M. A. Almessiere, Y. Slimani, A. V. Trukhanov A. Baykal, H. Gungunes, E. L. Trukhanova, S. V. Trukhanov, V. G. Kostishin. J. Ind. Eng. Chem., 90, 251 (2020). https://doi.org/10.1016/j.jiec.2020.07.020

    Article  CAS  Google Scholar 

  10. A. Poorbafrani, E. Kiani. J. Magn. Magn. Mater., 416, 10 (2016). https://doi.org/10.1016/j.jmmm.2016.04.046

    Article  ADS  CAS  Google Scholar 

  11. Y. Liu, S. C. Wei, Y. J. Wang, H. L. Tian, H. Tong, B. S. Xu. Phys. Procedia, 50, 43 (2013). https://doi.org/10.1016/j.phpro.2013.11.009

    Article  ADS  CAS  Google Scholar 

  12. N. N. Ali, R. A. B. Al-Marjeh, Y. Atassi, A. Salloum, A. Malki, M. Jafarian. J. Magn. Magn. Mater., 453, 53 (2018). https://doi.org/10.1016/j.jmmm.2018.01.014

    Article  ADS  CAS  Google Scholar 

  13. P. Saha, T. Debnath, S. Das, S. Chatterjee, S. Sutradhar. Mater. Sci. Eng. B, 245, 17 (2019). https://doi.org/10.1016/j.mseb.2019.05.006

    Article  CAS  Google Scholar 

  14. R. I. Shakirzyanov, V. G. Kostishyn, A. T. Morchenko, I. Isaev, V. Kozlov, V. Astakhov. Russ. J. Inorg. Chem., 65 (6), 829 (2020). https://doi.org/10.1134/S0036023620060194

    Article  CAS  Google Scholar 

  15. V. V. Kochervinskii. Bull. Russ. Acad. Sci.: Phys., 84 (2), 144 (2020). https://doi.org/10.3103/S106287382002015X

    Article  CAS  Google Scholar 

  16. A. V. Lopatin, N. E. Kazantseva, Yu. N. Kazantsev, O. A. D’yakonova, J. Vilcakova, P. Saha. J. Comm. Technol. Electron., 53 (5), 487 (2008). https://doi.org/10.1134/S106422690805001X

    Article  Google Scholar 

  17. E. V. Yakushko, L. V. Kozhitov, D. G. Muratov, et al. Russ. Phys. J., 63 (12), 2226 (2021). https://doi.org/10.1007/s11182-021-02292-8

    Article  CAS  Google Scholar 

  18. M. Saini, R. Shukla, A. Kumar. J. Magn. Magn. Mater., 491, 165549 (2019). https://doi.org/10.1016/j.jmmm.2019.165549

  19. N. Gill, A. L. Sharma, V. Gupta, M. Tomar, O. P. Pandey, D. P. Singh. J. Alloys Compd. 797, 1190 (2019). https://doi.org/10.1016/j.jallcom.2019.05.176

    Article  CAS  Google Scholar 

  20. D. C. Jenn. Radar and Laser Cross Section Engineering (AIAA, 1995), https://doi.org/10.2514/4.105630

    Book  Google Scholar 

  21. C. Sun, C. Cheng, M. Sun, Z. Zhang. J. Magn. Magn. Mater., 482, 79 (2019). https://doi.org/10.1016/j.jmmm.2019.03.034

    Article  ADS  CAS  Google Scholar 

  22. P. Thakur, D. Chahar, S. Taneja, N. Bhalla, A. Thakur. Ceram. Int., 46 (10), 15740 (2020). https://doi.org/10.1016/j.ceramint.2020.03.287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. V. V. Kochervinskii. Russ. Chem. Rev., 65 (10), 865 (1996). https://doi.org/10.1070/RC1996v065n10ABEH000328

    Article  ADS  Google Scholar 

  24. N. A. Poklonskiy, N. I. Gorbachuk. Osnovy impedansnoi spek- troskopii kompositov: kurs lektsiy (BGU, Minsk, 2005) (in Russian).

    Google Scholar 

  25. D. Ravinder, K. Latha. J. Appl. Phys., 75, 6118 (1994). https://doi.org/10.1063/1.355479

    Article  ADS  CAS  Google Scholar 

  26. V. A. Astakhov, R. I. Shakirzyanov, A. T. Morchenko, et al., J. Nano-Electron. Phys., 8 (3), 03044 (2016). https://doi.org/10.21272/jnep.8(3).03044

    Article  CAS  Google Scholar 

  27. A. T. Morchenko. Bull. Russ. Acad. Sci.: Phys., 78 (11), 1209 (2014). https://doi.org/10.3103/S1062873814110203

    Article  CAS  Google Scholar 

  28. T. Tsutaoka. J. Appl. Phys. 93, 2789 (2003) https://doi.org/10.1063/1.1542651

    Article  ADS  CAS  Google Scholar 

  29. V. Babayan, N. E. Kazantseva, R. Moucka, I. Sapurina, Yu. M. Spivak, V. A. Moshnikov. J. Magn. Magn. Mater., 324, 161 (2012). https://doi.org/10.1016/j.jmmm.2011.08.002

    Article  ADS  CAS  Google Scholar 

  30. B. Wang, J. Wei, L. Qiao, T. Wang, F. Li. J. Magn. Magn. Mater., 324, 761 (2012). https://doi.org/10.1016/j.jmmm.2011.09.011

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This study was supported by a grant from the Russian Science Foundation (agreement 19-19-00694 dated 06.05.2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Kostishin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaev, I.M., Kostishin, V.G., Shakirzyanov, R.I. et al. Radar Absorbing and Shielding Characteristics in Ferrite-Polymer Composites Mn-Zn Ferrite/P (TFE-VDF). Tech. Phys. 68 (Suppl 3), S552–S561 (2023). https://doi.org/10.1134/S106378422390084X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378422390084X

Keywords:

Navigation