Skip to main content
Log in

Negative Current Feedback in the Accelerating Gap in Electron Sources with a Plasma Cathode

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Using the example of an electron source with a plasma cathode based on a low-pressure arc discharge with grid stabilization of the cathode/emission plasma boundary and an open anode/beam plasma boundary, a mechanism is described for increasing the electrical strength of a high-voltage accelerating gap by introducing a series negative current feedback (NCF) in the accelerating interval, which makes it possible to level out uncontrolled bursts of the beam current during its pulse. The introduction of NCF is achieved by using a special electrode in the space of the plasma emitter connected through a resistance to the anode of the arc discharge, and the main task of which is to intercept accelerated ions penetrating into the emitter from the high-voltage accelerating gap, due to which the current of electron emission from the arc discharge plasma decreases by a value proportional to the ion current in the accelerating gap. Since most sources and accelerators of electrons with plasma cathodes based on discharges of various types have a similar principle of operation, the use of this method will not only expand the limiting parameters of the generated electron beams, but also increase the stability of the operation of such electron sources, and, accordingly, beam irradiation of various materials and products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. V. E. Gromov, Yu. F. Ivanov, S. V. Vorobiev, S. V. Konovalov. Fatigue of Steels Modified by High Intensity Electron Beams (Cambridge, 2015).

    Google Scholar 

  2. V. A. Burdovitsin, A. S. Klimov, A. V. Medovnik, E. M. Oks, Yu. G. Yushkov. Forvacuumnye plazmennye istochniki electronov (Izd-vo Tomskogo un-ta, Tomsk, 2014). (in Russian).

  3. N. N. Koval, V. N. Devyatkov & M. S. Vorobyev. Russ. Phys. J., 63 1651, (2021). https://doi.org/10.1007/s11182-021-02219-3

    Article  Google Scholar 

  4. A. B. Belov [et al]. Silnotochnye impulsnye electronnye puchki dlya aviatsionnogo dvigatelestroeniya, ed. by A.S. Novikov, V.A. Shulov, V.I. Engelko (Dipak, M., 2012). (in Russian).

  5. E. Oks. Plasma Cathode Electron Sources: Physics, Technology, Applications (Weinheim: Wiley – VCH, 2006).

    Book  Google Scholar 

  6. N. V. Gavrilov, V. V. Osipov, O. A. Bureev [et al.]. Tech. Phys. Lett., 31 (2), 122 (2005). https://doi.org/10.1134/1.1877622

    Article  ADS  CAS  Google Scholar 

  7. M. S. Vorobyov, S. A. Gamermaister, V. N. Devyatkov, N. N. Koval, S. A. Sulakshin, P. M. Shchanin. Tech. Phis. Lett., 40 (12), 506 (2014). https://doi.org/10.1134/S1063785014060261

    Article  CAS  Google Scholar 

  8. N. N. Koval, S. V. Grigoryev, V. N. Devyatkov, A. D. Teresov, P. M. Schanin. IEEE Trans. Plasma Sci., 37 (10), 1890 (2009). https://doi.org/10.1109/tps.2009.2023412

    Article  ADS  Google Scholar 

  9. A. V. Zharinov, Yu. A. Kovalenko, I. S. Roganov, P. M. Teryukanov. ZhTF, 56 (1), 66 (1986) (in Russian).

    ADS  Google Scholar 

  10. A. V. Zharinov, Yu. A. Kovalenko, I. S. Roganov, P. M. Teryukanov. ZhTF, 56 (4), 687 (1986) (in Russian).

    Google Scholar 

  11. M. S. Vorobyov, P. V. Moskvin, V. I. Shin, N. N. Koval, K. T. Ashurova, S. Yu. Doroshkevich, V. N. Devyatkov, M. S. Torba, V. A. Levanisov. Tech. Phys. Lett., 47 (7), 528 (2021). https://doi.org/10.1134/S1063785021050291

    Article  ADS  CAS  Google Scholar 

  12. M. S. Vorobyov, N. N. Koval, P. V. Moskvin, A. D. Teresov, S. Yu. Doroshkevich, V. V. Yakovlev, VI. Shin, J. Phys.: Conf. Ser., 1393, 012064 (2019). https://doi.org/10.1088/1742-6596/1393/1/012064

  13. M. S. Vorobyov, T. V. Koval, V. I. Shin, P. V. Moskvin, My Kim An Tran, N. N. Koval, K. Ashurova, S. Yu. Doroshkevich, M. S. Torba. IEEE Trans. Plasma Sci., 49 (9), 2550 (2021). https://doi.org/10.1109/TPS.2021.3089001

    Article  ADS  CAS  Google Scholar 

  14. S. Yu. Doroshkevich, M. S. Vorobyov, V. V. Yakovlev. IOP Conf. Series, 1115, 022017 (2018). https://doi.org/10.1088/1742-6596/1115/2/022017

  15. V. I. Gushenets, P. M. Schanin. Russ. Phys. J., 44 (9), 962 (2001). https://doi.org/10.1023/A:1014362023321

    Article  CAS  Google Scholar 

  16. R. Gunzel. Vac. Sci. Technol., 17 (2), 895 (1999).

    Article  CAS  Google Scholar 

  17. V. L. Galanskii, Y. E. Kreindel’, E. M. Oks [et al.]. High Temperature, 25 (5), 632 (1988).

    Google Scholar 

  18. L. G. Vintizenko, N. V. Gavrilov, N. N. Koval, Yu. E. Kreindel, V. S. Tolkachev, P.M. ShchaninImpulsnye vysokovoltnye istochniki elektronov s plasmennym emitterom dlya formirovaniya puchkov bolshogo secheniya, v knige Istochniki elektronov s plazmennym emitterom, ed. by Yu.E. Kreindel (Nauka, Novosibirsk, 1983). (in Russian).

    Google Scholar 

  19. S. P. Bugaev, Yu. E. Kreindel, P. M. Shchanin. Elektronnye puchki bolshogo secheniya (Energoatomizdat, M., 1984). (in Russian).

  20. I. Yu. Bakeev, A. V. Kazakov, A. V. Medovnik, E. M. Oks. J. Phys.: Conf. Ser., 1488, 012001 (2020). https://doi.org/10.1088/1742-6596/1488/1/012001

  21. V. A. Gruzdev, Yu. E. Kreindel, Yu. M. Larin. TVT, 11 (3), 482 (1973). (in Russian).

    Google Scholar 

  22. V. A. Gruzdev, Yu. E. Kreindel, Yu. M. Larin. ZhTF, 43 (11), 2318 (1973). (in Russian).

    Google Scholar 

  23. N. V. Gavrilov, D. R. Emlin, A. S. Kamenetskikh. Tech. Phys., 53 (10), 1308 (2008). https://doi.org/10.1134/S1063784208100083

    Article  CAS  Google Scholar 

  24. T. V. Koval, Le Hu Zung. Izv. vuzov. Fizika. 57 (3-2), 118 (2014). (in Russian).

Download references

Funding

The work was performed using a grant from the Russian Science Foundation (project no. 20-79-10015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Vorobyov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobyov, M.S., Moskvin, P.V., Shin, V.I. et al. Negative Current Feedback in the Accelerating Gap in Electron Sources with a Plasma Cathode. Tech. Phys. 68 (Suppl 3), S499–S504 (2023). https://doi.org/10.1134/S1063784223900772

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223900772

Keywords:

Navigation