Skip to main content
Log in

Influence of Preionization on the Microchannel Structure of a Spark Discharge in Air in a Pin-Plane Gap

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The initial phase of a spark discharge in the gap between the pin (cathode) and a plane 1.5 mm long in atmospheric pressure air under conditions of preliminary photoionization by an auxiliary discharge was investigated by the method of shadow photography. In the absence of preionization, the discharge from the first nanoseconds after breakdown is an aggregate of a large number of micron-diameter channels. It was found that the electron concentration resulting from preionization, estimated at 108–109 cm–3, increases the degree of uniformity of the discharge channel in the near-cathode region; however, in the near-anode region, the channel remains microstructured. Within the framework of the mechanism of microstructure formation due to the instability of the ionization wave front, a criterion for the formation of a uniform discharge is obtained and an explanation of the results obtained is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. V. V. Osipov, Phys.-Usp., 43 (3), 221 (2000).

    Article  Google Scholar 

  2. V. N. Karnyushin, R. I. Soloukhin, Dokl. Akad. Nauk SSSR, 236 (2), 347 (1977) (in Russian).

    ADS  CAS  Google Scholar 

  3. E. M. Bazelyan, Yu. P. Raizer, Iskrovoi razryad (Mosk. Fiz- Tekh. Inst., M., 1997) (in Russian).

  4. K. I. Almazova, A. N. Belonogov, V. V. Borovkov, E. V. Gorelov, I. V. Morozov, A. A. Trenkin, S. Yu. Kharitonov. Tech. Phys., 63 (6), 801 (2018). https://doi.org/10.1134/S1063784218060026

    Article  CAS  Google Scholar 

  5. A. A. Trenkin, K. I. Almazova, A. N. Belonogov, V. V. Borovkov, E. V. Gorelov, I. V. Morozov, S. Yu. Kharitonov. Tech. Phys., 65 (12), 1948 (2020). https://doi.org/10.1134/S1063784220120270

    Article  CAS  Google Scholar 

  6. E. V. Parkevich, M. A. Medvedev, A. I. Khirianova, G. V. Ivanenkov, A. S. Selyukov, A. V. Agafonov, K. V. Shpakov, A. V. Oginov. Plasma Sources Sci. Technol., 28, 125007 (2019). https://doi.org/10.1088/1361-6595/ab518e

  7. E. V. Parkevich, M. A. Medvedev, G. V. Ivanenkov, A. I. Khirianova, A. S. Selyukov, A. V. Agafonov, Ph. A. Korneev, S. Y. Gus’kov, A. R. Mingaleev. Plasma Sources Sci. Technol., 28, 095003 (2019). https://doi.org/10.1088/1361-6595/ab3768

  8. A. G. Rep’ev, P. B. Repin, V. S. Pokrovski’. Tech. Phys., 52 (1), 52 (2007).

    Article  Google Scholar 

  9. A. A. Trenkin, V. I. Karelin. Technical Physics, 53 (3), 314 (2008). https://doi.org/10.1134/S1063784208030055

    Article  ADS  CAS  Google Scholar 

  10. V. I. Karelin, A. A. Trenkin. Tech. Phys., 53 (9), 1236 (2008). https://doi.org/10.1134/S106378420809017X

    Article  CAS  Google Scholar 

  11. E. D. Lozanskii, O. B. Firsov, Teoriya iskry (Atomizdat, M., 1975) (in Russian).

  12. O. A. Sinkevich, High Temp., 41 (5), 609 (2003).

    Article  CAS  Google Scholar 

  13. M. Arrayas, M. Fontelos, J. Trueba. Phys. Rev. Lett., 95 (5), 165001 (2005). https://doi.org/10.1103/PhysRevLett.95.165001

  14. A. Rocco, U. Ebert, W. Hundsdorfer. Phys. Rev. E, 66, 035102(r) (2002). https://doi.org/10.1103/PhysRevE.66.035102

  15. A. Luque, F. Brau, U. Eber. Phys. Rev. E, 78, 016206 (2008). https://doi.org/10.1103/PhysRevE.78.016206

  16. I. M. Piskarev, I. P. Ivanova, S. V. Trofimova. Intern. J. Appl. Fundament. Res., 60, 12 (2014).

    Google Scholar 

  17. E. I. Kozlova, A. Yu. Kolesnikov, A. A. Kotov, V. P. Novikov, Plasma Phys. Rep., 32 (5), 440 (2006).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Tren’kin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tren’kin, A.A., Almazova, K.I., Belonogov, A.N. et al. Influence of Preionization on the Microchannel Structure of a Spark Discharge in Air in a Pin-Plane Gap. Tech. Phys. 68 (Suppl 3), S493–S498 (2023). https://doi.org/10.1134/S1063784223900760

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223900760

Keywords:

Navigation