Skip to main content
Log in

Microwave Magnetoresistance Effect in a (CoFe/Cu) Superlattice with Micron-Sized Holes

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The microwave giant magnetoresistance effect in a (CoFe/Cu) superlattice with micron-sized holes has been studied. Measurements of the frequency dependences of the transmission coefficient, as well as the dependences of the microwave transmission and reflection coefficients on the magnetic field, are performed. The measurements were performed on the superlattice samples without holes, having one hole with a diameter of 6.3 μm and seven holes with a diameter of 1.7 μm. It is shown that the presence of a hole with a diameter of 6.3 μm leads to a significant frequency dependence of the microwave giant magnetoresistance effect. Magnetic and magnetoresistance measurements of superlattice samples were performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. J. J. Krebs, P. Lubitz, A. Chaiken, G. A. Prinz. J. Appl. Phys., 69 (8), 4795 (1991). https://doi.org/10.1063/1.348232

    Article  ADS  CAS  Google Scholar 

  2. B. K. Kuanr, A. V. Kuanr, P. Grunberg, G. Nimtz. Phys. Lett. A, 221 (3-4), 245 (1996). https://doi.org/10.1016/0375-9601(96)00567-1

    Article  ADS  CAS  Google Scholar 

  3. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, J. Chazelas. Phys. Rev. Lett., 61 (21), 2472 (1988). https://doi.org/10.1103/PhysRevLett.61.2472

    Article  ADS  CAS  PubMed  Google Scholar 

  4. G. Binasch, P. Grunberg, F. Saurenbach, W. Zinn. Phys. Rev. B, 39 (7), 4828 (1989). https://doi.org/10.1103/PhysRevB.39.4828

    Article  ADS  CAS  Google Scholar 

  5. P. Bruno. Phys. Rev. B, 52 (1), 411 (1995). https://doi.org/10.1103/PhysRevB.52.411

    Article  ADS  CAS  Google Scholar 

  6. V. V. Ustinov, A. B. Rinkevich, L. N. Romashev, V. I. Minin. JMMM, 177–181, 1205 (1998).https://doi.org/10.1016/S0304-8853(97)00279-5

  7. E. M. Kogan, E. A. Turov, V. V. Ustinov. Phys. Met. Metallogr., 53 (2), 223 (1982).

    Google Scholar 

  8. T. Rausch, T. Szczurek, M. Schlesinger. J. Appl. Phys., 85 (1), 314 (1999). https://doi.org/10.1063/1.369448

    Article  ADS  CAS  Google Scholar 

  9. D. P. Belozorov, V. N. Derkach, S. V. Nedukh, A. G. Ravlik, S. T. Roschenko, I. G. Shipkova, S. I. Tarapov, F. Yildiz. Int. J. Infrared Milli. Waves., 22 (11), 1669 (2001). https://doi.org/10.1023/A:1015060515794

    Article  CAS  Google Scholar 

  10. V. V. Ustinov, A. B. Rinkevich, L. N. Romashev. JMMM, 198–199, 82 (1999). https://doi.org/10.1016/S0304-8853(98)00631-3

    Article  ADS  Google Scholar 

  11. Z. Frait, P. Sturc, K. Temst, Y. Bruynseraede, I. Vavra. Solid State Commun., 112 (10), 569 (1999). https://doi.org/10.1016/S0038-1098(99)00392-0

    Article  ADS  CAS  Google Scholar 

  12. V. V. Ustinov, A. B. Rinkevich, L. N. Romashev, E. A. Kuznetsov. Tech. Phys., 54 (8), 1156 (2009). https://doi.org/10.1134/S1063784209080106

    Article  CAS  Google Scholar 

  13. D. E. Endean, J. N. Heyman, S. Maat, E. Dan Dahlberg. Phys. Rev. B, 84 (21), 212405 (2011). https://doi.org/10.1103/PhysRevB.84.212405

  14. A. V. Chumak, V. I. Vasyuchka, A. A. Serga, B. Hillebrands. Nat. Phys., 11 (6), 453 (2015). https://doi.org/10.1038/nphys3347

    Article  CAS  Google Scholar 

  15. B. Divinskiy, V. E. Demidov, S. O. Demokritov, A. B. Rinkevich, S. Urazhdin. Appl. Phys. Lett., 109 (25), 252401 (2016). https://doi.org/10.1063/1.4972244

  16. S. A. Nikitov, D. V. Kalyabin, I. V. Lisenkov, A. N. Slavin, Yu. N. Barabanenkov, S. A. Osokin, A. V. Sadovnikov, E. N. Beginin, M. A. Morozova, Yu. P. Sharaevsky, Yu. A. Filimonov, Yu. V. Khivintsev, S. L. Vysotsky, V. K. Sakharov, E. S. Pavlov. Phys. Usp., 58 (10), 1002 (2015). https://doi.org/10.3367/UFNe.0185.201510m.1099

    Article  ADS  CAS  Google Scholar 

  17. A. Fert. Phys. Usp., 51 (12), 1336 (2008). https://doi.org/10.3367/UFNr.0178.200812f.1336

    Article  Google Scholar 

  18. M. Farle, T. Silva, G. Woltersdorf. In: Magnetic Nanostructures, Spin Dynamics and Spin Transport, ed. by H. Zabel, M. Farle. (Springer-Verlag, Berlin, Heidelberg, 2013), p. 37. https://doi.org/10.1007/978-3-642-32042-2

    Book  Google Scholar 

  19. X. Zhang, W. Butler. In: Handbook of Spintronics, ed. by Y. Xu, D. D. Awschalom, J. Nitta. (Springer, Dordrecht, Heidelberg, NY., London, 2016), p. 3. https://doi.org/10.1007/978-94-007-6892-5

  20. Ultrathin Magnetic Structures, ed. by B. Heinrich, J. A. C. Bland. (Springer, Berlin Heidelberg, NY., 2005), v. IV. https://doi.org/10.1007/b138704

    Book  Google Scholar 

  21. R. E. Collin. Field Theory of Guided Waves (Wiley-Interscience-IEEE, NY., Chichester, Weinheim, Brisbane, Singapore, Toronto, 1991).

  22. M. Skorobogatiy. Nanostructured and Subwavelength Waveguides: Fundamentals and Applications (John Wiley & Sons, Chichester, 2012).

    Book  Google Scholar 

  23. N. Marinescu. Phys. Rev. E, 56 (2), 2166 (1997). https://doi.org/10.1103/PhysRevE.56.2166

    Article  ADS  CAS  Google Scholar 

  24. N. Marinescu. Phys. Rev. E, 54 (3), 2931 (1996). https://doi.org/10.1103/PhysRevE.54.2931

    Article  ADS  CAS  Google Scholar 

  25. M. G. Silveirinha, N. Engheta. Phys. Rev. Lett., 97 (15), 157403 (2006). https://doi.org/10.1103/PhysRevLett.97.157403

  26. S. A. Maier. Plasmonics: Fundamentals and Applications (Springer Science + Business Media LLC, NY., 2007). https://doi.org/10.1007/0-387-37825-1

  27. A. S. Silva, A. Hierro-Rodriguez, S. A. Bunyaev, G. N. Kakazei, O. V. Dobrovolskiy, C. Redondo, R. Morales, H. Crespo, D. Navas. AIP Advances, 9 (3), 035136 (2019). https://doi.org/10.1063/1.5080111

  28. V. Lomakin, S. Li, E. Michielssen. Microw. Opt. Technol. Lett., 49 (7), 1554 (2007). https://doi.org/10.1002/mop.22484

    Article  Google Scholar 

  29. A. Othonos, K. Kalli. Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Norwood, 1999).

    Google Scholar 

  30. Y. Mu, P. Li, Y. Wen. IEEE Sens. J., 21 (20), 22623 (2021). https://doi.org/10.1109/JSEN.2021.3110870

    Article  ADS  CAS  Google Scholar 

  31. W. Kuch, A. C. Marley, S. S. P. Parkin. J. Appl. Phys., 83 (9), 4709 (1998). https://doi.org/10.1063/1.367259

    Article  ADS  CAS  Google Scholar 

  32. M. A. Milyaev, L. I. Naumova, V. V. Ustinov. Phys. Met. Metallogr., 119 (12), 1162 (2018). https://doi.org/10.1134/S0031918X1812013X

    Article  ADS  CAS  Google Scholar 

  33. V. V. Ustinov, A. B. Rinkevich, I. G. Vazhenina, M. A. Milyaev. JETP, 131 (1), 139 (2020). https://doi.org/10.1134/S1063776120070171

    Article  ADS  Google Scholar 

  34. V. V. Ustinov, A. B. Rinkevich, D. V. Perov, A. M. Burkhanov, M. I. Samoylovich, S. M. Kleshcheva, E. A. Kuznetsov. 58 (4), 568 (2013). https://doi.org/10.1134/S1063784213040257

  35. N. A. Semenov. Tekhnicheskaya elektrodinamika (Svyaz’, M., 1972) (in Russian).

  36. L. M. Brekhovskikh. Waves in Layered Media (Academic Press, London, 1980).

    Google Scholar 

  37. L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, V. K. Varadan. Microwave Electronics: Measurement and Materials Characterization (John Wiley & Sons, Hoboken, 2004).https://doi.org/10.1002/0470020466

    Book  Google Scholar 

Download references

Funding

This study was performed as part of projects “Spin” no. AAAA-A18-118020290104-2 and “Function” no. AAAA-A19-119012990095-0. Microwave measurements were carried out with support from the Russian Science Foundation, grant no. 17-12-01002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Rinkevich.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rinkevich, A.B., Milyaev, M.A., Kuznetsov, E.A. et al. Microwave Magnetoresistance Effect in a (CoFe/Cu) Superlattice with Micron-Sized Holes. Tech. Phys. 68 (Suppl 3), S485–S492 (2023). https://doi.org/10.1134/S1063784223900723

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223900723

Keywords:

Navigation