Skip to main content
Log in

Numerical Modeling of Carbides Behavior under High-Energy Loading

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The results of research on modeling thermodynamic parameters of shock-wave loading of carbides with different stoichiometric ratios are presented. The carbides are considered as a mixture of carbon with the corresponding component. The calculations of pressure, compression and temperature values under shock-wave loading for solid and porous carbides in the range of pressure values above 3 GPa are performed. The model calculations are compared with the known experimental results on the shock-wave loading of carbides with different porosity values. The possibility of modeling the behavior according to the proposed method for carbides for which there are no experimental data at high dynamic loads is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. F. A. Akopov, M. A. Adrianov, R. Kh. Amirov, T. I. Borodina, L. B. Borovkova, G. E. Val’yano, A. Yu. Dolgoborodov, V. V. Tkachenko, M. B. Shavelkina. Refract. Ind. Ceram., 57 (5), 496 (2017). https://doi.org/10.1007/s11148-017-0011-5

    Article  CAS  Google Scholar 

  2. A. A. Bakanova, V. A. Bugaeva, I. P. Dudoladov, R. F. Trunin, Izv. Akad. Nauk SSSR. Ser. Fiz. Zemli, 6, 58 (1995) (in Russian).

    Google Scholar 

  3. M. N. Pavlovskii, Fiz. Tverd. Tela, 12 (7), 2175 (1970) (in Russian).

    CAS  Google Scholar 

  4. R. G. McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz, W. J. Carter. The Equation of State of Solids from Shock Wave Studies / In: High Velocity Impact Phenomena, ed. by R. Kinslow (Academic Press, NY., 1970).

    Google Scholar 

  5. W. H. Gust, E. B. Royce. J. Appl. Phys., 42, 276 (1971). https://doi.org/10.1063/1.1686902

    Article  ADS  CAS  Google Scholar 

  6. D. Grady. J. Phys. IV Proceedings, EDP Sci., 04 (C8), C8-385–C8-391 (1994). https://doi.org/10.1051/jp4:1994859

  7. T. J. Vogler, W. D. Reinhart, L. C. Chhabildas. J. Appl. Phys., 95, 4173 (2004). https://doi.org/10.1063/1.1686902

    Article  ADS  CAS  Google Scholar 

  8. Y. Zhang, T. Mashimo, Y. Uemura, M. Uchino, M. Kodama, K. Shibata, K. Fukuoka, M. Kikuchi, T. Kobayashi, T. Sekine. J. Appl. Phys., 100, 113536 (2006). https://doi.org/10.1063/1.2399334

  9. D. E. Grady. J. Appl. Phys., 117, 165904 (2015). https://doi.org/10.1063/1.4918604

  10. P. Dera, M. H. Manghnani, A. Hushur, Yi. Hu, S. Tkachev. J. Solid State Chem., 215, 85 (2014). https://doi.org/10.1016/j.jssc.2014.03.018

    Article  ADS  CAS  Google Scholar 

  11. S. A. Dyachkov, A. N. Parshikov, M. S. Egorova, S. Yu. Grigoryev, V. V. Zhakhovsky, S. A. Medin. J. Appl. Phys., 124, 085902 (2018). https://doi.org/10.1063/1.5043418

  12. D. E. Fratanduono, P. M. Celliers, D. G. Braun, P. A. Sterne, S. Hamel, A. Shamp, E. Zurek, K. J. Wu, A. E. Lazicki, M. Millot, G. W. Collins. Phys. Rev. B, 94, 184107 (2016). https://doi.org/10.1103/PhysRevB.94.184107

  13. A. M. Molodets, A. A. Golyshev, D. V. Shakhrai. J. Exp. Theor. Phys., 80, 467 (1995). https://doi.org/10.1134/S1063776117030049

    Article  ADS  Google Scholar 

  14. K. K. Maevskii. AIP Conf. Proc., 2167, 020204 (2019). https://doi.org/10.1063/1.5132071

  15. A. S. Savinykh, I. A. Cherepanov, S. V. Razorenov, A. I. Ovsienko, V. I. Rumyantsev, S. S. Ordan’yan. Tech. Phys., 63, 1755 (2018). https://doi.org/10.1134/S1063784218120186

    Article  CAS  Google Scholar 

  16. R. Kh. Bagramova, N. R. Serebryanaya, V. M. Prokhorov, V. D. Blank. Tech. Phys., 63 (7), 1010 (2018). https://doi.org/10.1134/S1063784218070046

    Article  Google Scholar 

  17. A. S. Savinykh, G. V. Garkushin, S. V. Razorenov, V. I. Rumyantsev. Tech. Phys., 60, 863 (2015). https://doi.org/10.1134/S1063784215060249

    Article  CAS  Google Scholar 

  18. A. I. Savvatimskii, S. V. Onufriev. High Temp., 58, 800 (2020). https://doi.org/10.1134/S0018151X20060188

    Article  CAS  Google Scholar 

  19. B. D. Sahoo, K. D. Joshi, T. C. Kaushik. Comput. Condens. Matter., 21, e00431 (2019). https://doi.org/10.1016/j.cocom.2019.e00431

  20. J. S. Olsen, L. Gerward, U. Benedict, J.-P. Itie, K. Richter. J. Less Common Metal., 121, 445 (1986). https://doi.org/10.1016/0022-5088(86)90561-8

    Article  CAS  Google Scholar 

  21. B. D. Sahoo, K. D. Joshi, Satish C. Gupta, J. Nucl. Mater., 437, 81 (2013). https://doi.org/10.1016/j.jnucmat.2013.01.314

    Article  ADS  CAS  Google Scholar 

  22. B. D. Sahoo, D. Mukherjee, K. D. Joshi, T. C. Kaushik. J. Appl. Phys., 120, 085902 (2016). https://doi.org/10.1063/1.4961497

  23. J. -P. Dancausse, S. Heathman, U. Benedict, L. Gerward, J. Staun Olsen, F. Hulliger J. Alloy. Compd., 191, 309 (1993). https://doi.org/10.1016/0925-8388(93)90084-Z

    Article  CAS  Google Scholar 

  24. V. N. Senchenko, R. S. Belikov. J. Phys. : Conf. Ser., 1147, 012011. (2019). https://doi.org/10.1088/1742-6596/1147/1/012011

  25. A. S. Savinykh, I. A. Cherepanov, S. V. Razorenov, K. Mandel, L. Kruger. Tech. Phys., 64, 356 (2019). https://doi.org/10.1134/S1063784219030216

    Article  CAS  Google Scholar 

  26. R. F. Trunin, Issledovaniya ekstremalnykh sostoyanii kon- densirovannykh veshchestv metodom udarnykh voln. Urav- neniya Gyugonio (RFYaTs-VNIIEF, Sarov, 2006), p. 137 (in Russian).

  27. A. Ya. Pak, T. Yu. Yakich, G. Ya. Mamontov, M. A. Rudmin, Yu. Z. Vasil’eva. Tech. Phys., 65, 771 (2020). https://doi.org/10.1134/S1063784220050205

    Article  CAS  Google Scholar 

  28. S. A. Rasakia, B. Zhanga, K. Anbalgamb, T. Thomas, M. Yang. Prog. Solid State Chem., 50, 1 (2018). https://doi.org/10.1016/j.progsolidstchem.2018.05.001

  29. D. Cho, J. H. Park, Y. Jeong, Y. L. Loo. Ceram. Int., 41, 10974 (2015) https://doi.org/10.1016/j.ceramint.2015.05.041

    Article  CAS  Google Scholar 

  30. Q. Dong, M. Huang, C. Guo, G. Yu, M. Wu. Int. J. Hydrogen Energy, 42, 3206 (2017) https://doi.org/10.1016/j.ijhydene.2016.09.217

    Article  CAS  Google Scholar 

  31. A. N. Ishchenko, S. A. Afanas’eva, N. N. Belov, V. V. Burkin, S. V. Galsanov, V. Z. Kasimov, V. A. Kudryavtsev, Ya. D. Li- patnikova, L. S. Martsunova, K. S. Rogaev, A. Yu. Sammel’, A. B. Skosyrskii, N. T. Yugov. Tech. Phys., 65, 414 (2020). https://doi.org/10.1134/S106378422003010X

    Article  CAS  Google Scholar 

  32. A. S. Savinykh, K. Mandel, S. V. Razorenov, L. Krüger. Tech. Phys., 63, 357 (2018). https://doi.org/10.1134/S1063784218030210

    Article  CAS  Google Scholar 

  33. K. K. Maevskii. J. Phys. Conf. Series., 894, 012057 (2017). https://doi.org/10.1088/1742-6596/894/1/012057

  34. K. K. Maevskii, S. A. Kinelovskii. High Temperature, 56 (6) 853 (2018). https://doi.org/10.1134/S0018151X18060172

    Article  CAS  Google Scholar 

  35. K. K. Maevskii, S A Kinelovskii. J. Phys. Conf. Series., 946, 012113 (2018). https://doi.org/10.1088/1742-6596/946/1/012113

  36. K. K. Maevskii. Math. Montis., 41, 123 (2018).

    Google Scholar 

  37. K. K. Maevskii. Tech. Phys., 66, 791 (2021). https://doi.org/10.1134/S1063784221050145

    Article  Google Scholar 

  38. Ya. B. Zel’dovich, Yu. P. Raizer, Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii (Fiz- matlit, M., 2008), p. 519 (in Russian).

  39. P. R. Levashov, K. V. Khishchenko, I. V. Lomonosov, V. E. Fortov. AIP Conf. Proc., 706, 87 (2004). http://www.ihed.ras.ru/rusbank/

  40. M. N. Pavlovskii, Fiz. Tverd. Tela, 13 (3), 893 (1970) (in Russian).

    Google Scholar 

  41. S. P. Marsh (editor). LASL Shock Hugoniot Data (Univ. California Press, Berkeley, 1980).

  42. R. F. Trunin, L. F. Gudarenko, M. V. Zhernokletov, G. V. Simakov, Eksperimentalnye dannye po udarno- volnovomu szhatiyu i adiabaticheskomu rasshireniyu kondensirovannykh veshchestv (RFYaTs-VNIIEF, Sarov, 2006) (in Russian).

  43. А. М. Molodets, A. A. Golyshev, G. V. Shilov. JETP Lett., 111 (12), 720 (2020). https://doi.org/10.1134/S0021364020120103

    Article  ADS  Google Scholar 

  44. M. DeVries, G. Subhash, A. Awasthi. Phys. Rev. B, 101, 144107 (2020).

  45. I. V. Lomonosov, V. E. Fortov, A. A. Frolova, K. V. Khishchenko, A. A. Charakhchyan, L. V. Shurshalov. Tech. Phys., 48, 727 (2003). https://doi.org/10.1134/1.1583826

    Article  CAS  Google Scholar 

  46. A. V. Ostrik, Konstr. Kompoz. Mater., 2, 48 (2018) (in Russian).

    Google Scholar 

  47. K. K. Maevskii, S. A. Kinelovskii. AIP Conf. Proc., 1783, 020143 (2016). https://doi.org/10.1063/1.4966436

  48. K. K. Maevskii. Math. Montis., 50, 140 (2021). https://doi.org/10.20948/mathmontis-2021-50-12

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Maevskii.

Ethics declarations

The author declares that he has no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maevskii, K.K. Numerical Modeling of Carbides Behavior under High-Energy Loading. Tech. Phys. 68 (Suppl 3), S466–S472 (2023). https://doi.org/10.1134/S106378422390067X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378422390067X

Keywords:

Navigation