Skip to main content
Log in

Optimizing the Production of Single-Mode Optical Microfibers for Coherent Microoptics

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Micro- and nanofibers are the universal elements of the optical schemes for solving wide variety of experimental tasks. One usually uses the commercial optical fiber tapering in the burner’s flame to produce such nanofibers. Such tapers are actively used for production of highly sensitive sensors, experiments with the cold atoms and coupling to optical microresonators. The theoretical model of geometrical shape altering during the fiber tapering and heating was adapted in this publication for use in the algorithm with universal adjustment of the tapering modes to get a fiber with the desired set of parameters. One of the innovations was the implementation of the computer vision to control the tapering process. As a result, the nanofibers with the optimal waist diameter of about 700 nm for the radiation wavelength of 1.55 μm were obtained. The optimized methodic of tapering allows the production of the nanofibers with the transmittance of up to 80%. The produced nanofibers were successfully used for coupling to the crystalline whispering gallery mode microresonator. As a result, the optical combs with the spectrum range up to 200 nm were obtained in IR range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. L. Tong, F. Zi, X. Guo, Lou. J. Opt. Commun., 285, 4641–4647 (2012).

    Article  ADS  CAS  Google Scholar 

  2. P. Solano, J. A. Grover, J. E. Hoffman, S. Raverts, F. K. Fatemi, L. A. Orozco, S. L. Rolston. Adv. At. Mol. Opt. Phys., 66, 439–505 (2017). https://doi.org/10.1016/bs.aamop.2017.02.003

    Article  Google Scholar 

  3. S. Lacroix, R. Bourbonnais, F. Gonthier, J. Bures. App-l. Opt., 25, 4421 (1986).

    Article  ADS  CAS  Google Scholar 

  4. F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, A. Rauschenbeutel. Opt. Express, 15, 11952 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. F. Le Kien, J.Q. Liang, K. Hakuta, VI. Balykin. Opt. Commun., 242, 445–455 (2004).

    Article  ADS  Google Scholar 

  6. M.L. Gorodetsky. Opticheskie microrezonatory s gigantskoj dobrotnost’yu (Fizmatlit, 2011), 416 p. (in Russian).

    Google Scholar 

  7. T. A. Birks, W. J. Wadsworth, P. StJ. Russell. Opt. Lett., 25, 1415–1417 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. S. M. Spillane, T. J. Kippenberg, O. J. Painter, K. J. Vahala. Phys. Rev. Lett., 91, 2–5 (2003).

    Article  Google Scholar 

  9. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N.P. Sessions, E. Koukharenko, X. Feng, G.S. Murugan, J.S. Wilkinson, D.J. Richardson. Adv. Opt. Photon., 1 (1), 107–161 (2009).

    Article  CAS  Google Scholar 

  10. G. Sague. Cold Atom Physics Using Ultra-Thin Optical Fibre (Rheinischen Friedrich-Wilhelms-Universit, Bonn, 2007), 164 p.

    Google Scholar 

  11. S. M. Spillane. Fiber-coupled Ultra-high-Q Microresonators for Nonlinear and Quantum Optics Thesis by. Thesis 2004, 143 (2004).

  12. A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, R. Morandotti. Phys. Reports, 729, 1–81 (2018).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  13. M. Kues, C. Reimer, J.M. Lukens, W.J. Munro, A. M. Weiner, D.J. Moss, R. Morandotti. Nature Photonics, 13 (3), 170–179 (2019).

    Article  ADS  CAS  Google Scholar 

  14. F. Warken. Ultradunne Glasfasern als Werkzeug zur Kopplung von Licht und Materie. Thesis 1–183 (2007).

  15. T. A. Birks, Y. W. Li. J. Light. Technol., 10, 432–438 (1992).

    Article  ADS  Google Scholar 

  16. E. Vetsch. Optical Interface Based on a Nanofiber., 152 (2010).

  17. A. W. Snyder, J. Love. Optical Waveguide Theory (Academic Publishers, Kluver, 1983)

  18. J. D. Love. IEE Proceedings. Part J., Optoelectron., 136 (4), 225–228 (1989). https://doi.org/10.1049/ip-j.1989.0037

  19. J. D. Love. Electron. Lett., 23, 993–994 (1987). https://doi.org/10.1049/ip-j.1989.0037

    Article  ADS  Google Scholar 

  20. Y. Yu, X. Zhang, Z. Song, J. Wang, Z. Meng. Appl. Opt., 53 (35), 8222 (2014). https://doi.org/10.1364/AO.53.008222

    Article  ADS  PubMed  Google Scholar 

  21. J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, S. L. Rolston. AIP Adv. 4, 067124 (2014). https://doi.org/10.1063/1.4879799

Download references

Funding

This study was carried out under partial financial support of the RSF (the grant no. 20-12-00344).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Lebedev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, N.M., Min’kov, K.N., Shitikov, A.E. et al. Optimizing the Production of Single-Mode Optical Microfibers for Coherent Microoptics. Tech. Phys. 68 (Suppl 3), S457–S465 (2023). https://doi.org/10.1134/S1063784223900668

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223900668

Keywords:

Navigation