Skip to main content
Log in

Analysis of the Response of a Liquid Surface to the Pulse Action of an Inclined Gas Jet at Low Reynolds Number

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A mathematical description of the motion of a cavity on the liquid surface under an oblique action of a gas jet is obtained using the well-known expressions for the movement of a gas bubble in a liquid. The boundary of the viscous drag force domination over the form drag force is determined. The impingement of the gas jet on the liquid surface is considered as a dynamic object of the automatic control theory. It is found that the dynamic properties of the two-phase system “gas jet–liquid” are described by the integrator equations. Using a specially designed setup, the transient response of the “gas jet–liquid” system were experimentally obtained for the aerodynamic action at angles of 20° and 50° to the surfaces of liquids with the viscosities of 0.71 and 26.1 Pa s (Reynolds number Re < 2). The research results are necessary for the analysis of the non-contact aerodynamic method of liquid viscosity measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. N. Dyussekenov, S. S. Park, H. Y. Sohn. Miner. Process. Extr. M., 120 (1), 21 (2011). https://doi.org/10.1179/037195510X12791826058136

    Article  CAS  Google Scholar 

  2. J. Maruyama, K. Ito, M. Ando, J. Okada, K. Ito. ISIJ Int., 60 (6), 1375 (2020). https://doi.org/10.2355/isijinternational.ISIJINT-2019-653

    Article  CAS  Google Scholar 

  3. Y. Chen, A. K. Silaen, C. Q. Zhou. Processes, 8 (6), 700 (2020). https://doi.org/10.3390/pr8060700

    Article  Google Scholar 

  4. G. Q. Liu, G. X. Zhang, K. Liu. Metalurgija, 59 (3), 299 (2020).

    Google Scholar 

  5. S. Sabah, G. Brooks. Ironmaking and Steelmaking, 43 (6), 473 (2016). https://doi.org/10.1080/03019233.2015.1113755

    Article  CAS  Google Scholar 

  6. D. Miñoz-Esparza, J.-M. Buchlin, K. Myrillas, R. Berger. Appl. Math. Model., 36 (6), 2687 (2012). https://doi.org/10.1016/j.apm.2011.09.052

    Article  MathSciNet  Google Scholar 

  7. C. J. Ojiako, R. Cimpeanu, H. C. H. Bandulasena, R. Smith, D. Tseluiko. J. Fluid Mech., 905, A18 (2020). https://doi.org/10.1017/jfm.2020.751

    Article  ADS  CAS  Google Scholar 

  8. B. B. Baldanov, A. P. Semenov, Ts. V. Ranzhurov, E. O. Nikolaev, S. V. Gomboeva. Tech. Phys., 60 (11), 1729 (2015). https://doi.org/10.1134/S1063784215110043

    Article  CAS  Google Scholar 

  9. A. Stancampiano, E. Simoncelli, M. Boselli, V. Colombo, M. Gherardi. Plasma Sourc. Sci. Tech., 27 (12), 125002 (2018). https://doi.org/10.1088/1361-6595/aae9d0

  10. S. Park, W. Choe, H. Lee, J. Y. Park, J. Kim, S. Y. Moon, U. Cvelbar. Nature, 592, 49 (2021). https://doi.org/10.1038/s41586-021-03359-9

    Article  CAS  PubMed  Google Scholar 

  11. T. R. Brubaker, K. Ishikawa, H. Kondo, T. Tsutsumi, H. Hashizume, H. Tanaka, S. D. Knecht, S. G. Bilén, M. Hori. J. Phys. D: Appl. Phys., 52 (7), 075203 (2018). https://doi.org/10.1088/1361-6463/aaf460

  12. W. Fu, X. Zhang. Optik, 207, 164451 (2020). https://doi.org/10.1016/j.ijleo.2020.164451

  13. D. M. Mordasov, M. M. Mordasov. Tech. Phys., 62 (3), 490 (2017). https://doi.org/10.1134/S1063784217030148

    Article  CAS  Google Scholar 

  14. A. H. Pfund, E. W. Greenfield. Ind. Eng. Chem., 8(2), 81 (1936). https://doi.org/10.1021/ac50100a001

    Article  CAS  Google Scholar 

  15. M. M. Mordasov, A. P. Savenkov, M. E. Safonova, V. A. Sychev. Meas. Tech., 61 (6), 613 (2018). https://doi.org/10.1007/s11018-018-1473-7

    Article  Google Scholar 

  16. B. V. Deryagin, V. V. Karasev, Russ. Chem. Rev., 57(7), 634 (1988). https://doi.org/10.1070/RC1988v057n07ABEH003379

    Article  ADS  Google Scholar 

  17. A. P. Savenkov, M. M. Mordasov, V. A. Sychev. Meas. Tech., 63 (9), 722 (2020). https://doi.org/10.1007/s11018-021-01845-0

    Article  CAS  Google Scholar 

  18. A. He, A. Belmonte. Phys. Fluid., 22 (4), 042103 (2010). https://doi.org/10.1063/1.3327209

  19. É. Ghabache, T. Séon, A. Antkowiak. J. Fluid. Mech., 761, 206 (2014). https://doi.org/10.1017/jfm.2014.629

    Article  ADS  Google Scholar 

  20. A. Balabel. Emirates J. Engineer. Res., 12 (3), 35 (2007).

    Google Scholar 

  21. M. M. Mordasov, A. P. Savenkov. Tech. Phys. Lett., 42 (9), 940 (2016). https://doi.org/10.1134/S1063785016090224

    Article  ADS  CAS  Google Scholar 

  22. M. Adib, M. A. Ehteram, H. B. Tabrizi. Appl. Math. Model., 62, 510 (2018). https://doi.org/10.1016/j.apm.2018.05.031

    Article  MathSciNet  Google Scholar 

  23. R. D. Collins, H. Lubanska. Brit. J. Appl. Phys., 5 (1), 22 (1954). https://doi.org/10.1088/0508-3443/5/1/306

    Article  ADS  Google Scholar 

  24. J. Solórzano-López, R. Zenit, M. A. Ramírez-Argáez. Appl. Math. Model., 35 (10), 4991 (2011). https://doi.org/10.1016/j.apm.2011.04.012

    Article  Google Scholar 

  25. O. McRae, A. Gaillard, J. C. Bird. Phys. Rev. E, 96 (1), 013112 (2017). https://doi.org/10.1103/PhysRevE.96.013112

  26. X.-T. Wu, R. Zhu, G.-S. Wei, K. Dong. J. Min. Metall. B, 56 (3), 307 (2020). https://doi.org/10.2298/JMMB190225019W

    Article  CAS  Google Scholar 

  27. R. B. Kalifa, S. B. Hamza, N. M. Saïd, H. Bournot. Int. J. Mech. Sci., 165, 105220 (2020). https://doi.org/10.1016/j.ijmecsci.2019.105220

  28. X. Zhou, Q. Yue, Z. Di, D. Sheng, M. Ersson. JOM, 73 (10), 2953 (2021). https://doi.org/10.1007/s11837-021-04810-y

    Article  ADS  Google Scholar 

  29. M. M. Mordasov, A. P. Savenkov, K. E. Chechetov. Tech. Phys., 61 (5), 659 (2016). https://doi.org/10.1134/S1063784216050170

    Article  CAS  Google Scholar 

  30. V. N. Petrov, A. S. Shabalin, V. F. Sopin, S. B. Petrov, S. L. Malyshev. Vestn. tekhnolog. un-ta, 20 (2), 85 (2017) (in Russian).

  31. M. M. Mordasov, A. P. Savenkov. Meas. Tech., 58 (7), 796 (2015). https://doi.org/10.1007/s11018-015-0796-x

    Article  Google Scholar 

  32. V. A. Makarov, F. A. Korolev, R. E. Tyutyaev. IOP Conf. Ser.: Mater. Sci. Eng., 1047, 012014 (2021). https://doi.org/10.1088/1757-899X/1047/1/012014

  33. P. Snabre, F. Magnifotcham. Eur. Phys. J. B Condens. Matter., 4 (3), 369 (1998). https://doi.org/10.1007/s100510050392

    Article  CAS  Google Scholar 

  34. G. I. Kelbaliyev. Theor. Found. Chem. Eng., 45 (3), 248 (2011). https://doi.org/10.1134/S0040579511020084

    Article  CAS  Google Scholar 

  35. W. R. Quinn. Eur. J. Mech. B/Fluids, 25 (3), 279 (2006). https://doi.org/10.1016/j.euromechflu.2005.10.002

    Article  ADS  Google Scholar 

  36. J. Mi, P. Kalt, G. J. Nathan, C. Y. Wong. Exp. Fluid., 42 (4), 625 (2007). https://doi.org/10.1007/s00348-007-0271-9

    Article  Google Scholar 

  37. M. M. Mordasov, A. P. Savenkov, M. E. Safonova, V. A. Sychev. Optoelectron., Instrum. Data Process., 54 (1), 69 (2018). https://doi.org/10.3103/S8756699018010119

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Savenkov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savenkov, A.P., Sychev, V.A. Analysis of the Response of a Liquid Surface to the Pulse Action of an Inclined Gas Jet at Low Reynolds Number. Tech. Phys. 68 (Suppl 2), S200–S208 (2023). https://doi.org/10.1134/S1063784223900541

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223900541

Keywords:

Navigation