Skip to main content
Log in

Radar Absorbing Properties of Polyvinyl Alcohol/Ni–Zn Ferrite-Spinel Composite

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The electromagnetic and radio-absorbing characteristics of ferrite-polymer composites with conductive inclusions based on polyvinyl alcohol are investigated. The Ni–Zn spinel ferrite powder of 2000NN grade with composition Ni0.32Zn0.68Fe2O4 was used as filler. It is shown that the obtained composites are effective absorbers in the frequency range of 2–5 GHz with peak reflection loss less than ~20 dB. Through the analysis of the permittivity spectra and permeability spectra, as well as the calculated reflection loss spectra, critical factors of the electromagnetic wave absorption in obtained composites are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. D. Wanasinghe, F. Aslani. Composites Part B, 176, 107207 (2019). https://doi.org/10.1016/j.compositesb.2019.107207

  2. E. V. Yakushko, L. V. Kozhitov, D. G. Muratov, E. Yu. Korovin, A. A. Lomov, A. V. Popkova. Russ. Phys. J., 63 (12), 2226 (2021). https://doi.org/10.1007/s11182-021-02292-8

    Article  CAS  Google Scholar 

  3. D. Kumar, A. Moharana, A. Kumar. Mater. Today Chem., 17, 100346 (2020). https://doi.org/10.1016/j.mtchem.2020.100346

  4. S. B. Narang, K. Pubby. J. Magn. Magn., 519, 167163 (2021). https://doi.org/10.1016/j.jmmm.2020.167163

  5. X. Zeng, X. Cheng, R. Yu, G. D. Stucky. Carbon, 168, 606 (2019). https://doi.org/10.1016/j.carbon.2020.07.028

    Article  CAS  Google Scholar 

  6. Z. W. Li, G. Q. Lin, Linfeng Chen, Y. P. Wu, C. K. Ong. J. Appl. Phys. 98, 094310 (2005). https://doi.org/10.1063/1.2128688

  7. V. G. Andreev, S. B. Menshova, A. N. Klimov, R. M. Vergazov, S. B. Bibikov, M. V Prokofiev. J. Magn. Magn., 394, 1 (2015). https://doi.org/10.1016/j.jmmm.2015.06.007

    Article  CAS  ADS  Google Scholar 

  8. R. I. Shakirzyanov, V. G. Kostishyn, A. T. Morchenko, I. M. Isaev, V. V. Kozlov, V. A. Astakhov. Russ. J. Inorg. Chem., 65 (6), 829 (2020). https://doi.org/10.1134/S0036023620060194

    Article  CAS  Google Scholar 

  9. V. G. Kostishin, R. M. Vergazov, S. B. Men’shova, I. M. Isaev, A. V. Timofeev, Zavod. Lab., Diagn. Mater., 87 (1), 30 (2021) (in Russian). https://doi.org/10.26896/1028-6861-2021-87-1-30-34

  10. V. G. Kostishin, R. M. Vergazov, S. B. Men’shova, I. M. Isaev, Ross. Tekhnol. Zh., 8 (6), 87 (2020) (in Russian). https://doi.org/10.32362/2500-316X-2020-8-6-87-108

  11. I. M. Isaev, V. G. Kostishin, V. V. Korovushkin, D. V. Salogub, R. I. Shakirzyanov, A. V. Timofeev, A. Yu. Mironovich, Zh. Tekh. Fiz., 91 (9), 1376 (2021) (in Russian). https://doi.org/10.21883/JTF.2021.09.51217.74-21

  12. M. A. Almessiere, Y. Slimani, A. V. Trukhanov, A. Baykal, H. Gungunes, E. L. Trukhanova, S. V. Trukhanov, V. G. Kostishin. J. Ind. Eng. Chem., 90, 251 (2020). https://doi.org/10.1016/j.jiec.2020.07.020

    Article  CAS  Google Scholar 

  13. A. V. Lopatin, N. E. Kazantseva, Y. N. Kazantsev, O. A. D’yakonova, J. Vilckova, P. Saha. J. Commun. Technol. Electron., 53 (5), 487 (2008). https://doi.org/10.1134/S106422690805001X

    Article  Google Scholar 

  14. M. Aslam, M. A. Kalyar, Z. A. Raza. Polym. Eng. Sci., 58, 2119 (2018). https://doi.org/10.1002/pen.24855

    Article  CAS  Google Scholar 

  15. Zhang Qi, Liu Chunbo, Wu Zhuang, Yang Yang, Xie Zhiyong, Zhou Haikun, Chen Chudong. J. Magn. Magn., 479, 337 (2018). https://doi.org/10.1016/j.jmmm.2018.11.129

    Article  CAS  ADS  Google Scholar 

  16. Y. K. Lahsmin, H. Heryanto, S. Ilyas, A. N. Fahri, B. Abdullah, D. Tahir. Opt. Mater., 111, 110639 (2021). https://doi.org/10.1016/j.optmat.2020.110639

  17. B. Abdullah, S. Ilyas, D. Tahir. J. Nanomater., 2018, 9823263 (2018). https://doi.org/10.1155/2018/9823263

  18. S. Kumar, G. Datt, A. S. Kumar, A. C. Abhyankar. J. Appl. Phys., 120, 164901 (2016). https://doi.org/10.1063/1.4964873

  19. M. T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier, Amsterdam, Boston, 2008)

    Google Scholar 

  20. R. Metselaar, P. K. Larsen, in Proceedings of the International School of Physics Enrico Fermi (1978), v. 70, p. 417.

    Google Scholar 

  21. V. G. Kostishin, R. I. Shakirzyanov, A. G. Nalogin, S. V. Shcherbakov, I. M. Isaev, M. A. Nemirovich, M. A. Mikhailenko, M. V. Korobeinikov, M. P. Mezentseva, D. V. Salogub. Phys. Solid State, 63, 435 (2021). https://doi.org/10.1134/S1063783421030094

    Article  CAS  ADS  Google Scholar 

  22. J. Parashar, V. K. Saxena, J. Sharma, D. Bhatnagar, K. B. Sharma. Macromol. Symp. 357 (1), 43 (2015). https://doi.org/10.1002/masy.201400184

    Article  CAS  Google Scholar 

  23. P. Pengfei, Z. Ning. J. Magn. Magn. 416, 256 (2016). https://doi.org/10.1016/j.jmmm.2016.05.018

    Article  CAS  ADS  Google Scholar 

  24. N. Ghorbel, A. Kallel, S. Boufi. Composites Part A, 124, 105465 (2019). https://doi.org/10.1016/j.compositesa.2019.05.033

  25. S. B. Narang, K. Pubby. J. Magn. Magn., 519, 167163 (2021). https://doi.org/10.1016/j.jmmm.2020.167163

  26. S. Chikazumi, C. D. Graham. Physics of Ferromagnetism, 2nd ed. (Clarendon Press, Oxford University Press, Oxford, NY., 1997)

    Book  Google Scholar 

  27. V. Babayan, N. E. Kazantseva, R. Moucka, I. Sapurina, Yu. M. Spivak, V. A. Moshnikov. J. Magn. Magn., 324 (2), 161 (2012).https://doi.org/10.1016/j.jmmm.2011.08.002

  28. R. Panigrahi, S. Srivastava. Sci. Rep., 5, 7638 (2015). https://doi.org/10.1038/srep07638

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. B. Wang, J. Wei, L. Qiao, T. Wang, F. Li. J. Magn. Magn., 324, 761 (2012). https://doi.org/10.1016/j.jmmm.2011.09.011

    Article  CAS  ADS  Google Scholar 

  30. Tao Wang, Rui Han, Guoguo Tan, Jianqiang Wei, Liang Qiao, Fashen Li. J. Appl. Phys., 112, 104903 (2012). https://doi.org/10.1063/1.4767365

Download references

Funding

This study was supported by a grant from the Russian Science Foundation (agreement no. 19-19-00694 dated May 6, 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Kostishyn.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostishyn, V.G., Isaev, I.M., Shakirzyanov, R.I. et al. Radar Absorbing Properties of Polyvinyl Alcohol/Ni–Zn Ferrite-Spinel Composite. Tech. Phys. 68 (Suppl 2), S178–S184 (2023). https://doi.org/10.1134/S1063784223900474

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223900474

Keywords:

Navigation