Skip to main content
Log in

Scanning Nanoindentation as an Instrument of Studying Local Mechanical Properties Distribution in Wood and a New Technique for Dendrochronology

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The paper presents the results of scanning of mechanical properties of coniferous (common pine Pinus sylvestris) and deciduous (small-leaved lime Tilia cordata and common oak Quercus robur) trees wood using nanoindentation on crosscut face. Manifold increase in microhardness H and Young’s modulus E has been observed between early and late wood in every annual growth ring. Significant differences in intraring radial dependencies of H and E have been found among studied species. For all studied species the average values of E and H of early wood in each annual ring are found to be independent from ring width, while such dependence for late wood is weak at most. The ring widths measured by nanoindentation coincide with the ones measured by standard optical method within 2–3%. The developed technique and obtained results can be useful (1) to amend the understanding the origins of macromechanical properties of various wood species and their dependence upon microstructural characteristics and growth conditions, (2) to optimize the technologies of growing, reinforcement and subsequent usage of the wood, (3) to develop new independent high resolution methods in dendrochronology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Handbook of Nanocellulose and Cellulose Nanocomposites, eds. H. Kargarzadeh, I. Ahmad, S. Thomas, A. Dufresne (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2017).

  2. R. J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood. Chem. Soc. Rev., 40 (7), 3941 (2011). https://doi.org/10.1039/C0CS00108B

    Article  CAS  PubMed  Google Scholar 

  3. M. Reza, E. Kontturi, A.-S. Jääskeläinen, T. Vuorinen. Bioresources, 10 (3), 6230 (2015). https://doi.org/10.15376/biores.10.3

    Article  CAS  Google Scholar 

  4. A. Balzano, K. Novak, M. Humar, K. Cufar. Les/Wood, 68 (2), 5 (2019). https://doi.org/10.26614/les-wood.2019.v68n02a01

  5. J. Thomas, D. A. Collings. In book: Wood is Good. Current Trends and Future Prospects in Wood Utilization, eds. K. K. Pandey, V. Ramakantha, S. S. Chauhan, A. N. A. Kumar (Springer Nature Singapore Pte Ltd., 2017), p. 29. https://doi.org/10.1007/978-981-10-3115-1.3

    Book  Google Scholar 

  6. M. Broda, C.-M. Popescu. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 209, 280 (2019). https://doi.org/10.1016/j.saa.2018.10.057

    Article  ADS  CAS  PubMed  Google Scholar 

  7. E. E. N. Alves, D. R. O. Rodriguez, P. A. Rocha, L. Vergütz, L. S. Junior, D. Hesterberg, L. C. R. Pessenda, M. Tomazello-Filho, L. M. Costa. Results in Chem., 3, 100121 (2021). https://doi.org/10.1016/j.rechem.2021.100121

  8. J. Tintner, B. Spangl, F. Reiter, E. Smidt, M. Grabner. Wood Sci. Technol., 54, 313 (2020). https://doi.org/10.1007/s00226-020-01160-x

    Article  CAS  Google Scholar 

  9. C. M. Popescu, D. Jones, D. Krzisnik, M. Humar. J. Molecular Structure, 1200, 127133 (2020). https://doi.org/10.1016/j.molstruc.2019.127133

  10. N. Gierlinger. Appl. Spectr. Rev., 53 (7), 517 (2018). https://doi.org/10.1080/05704928.2017.1363052

    Article  ADS  Google Scholar 

  11. T. Kanbayashi, Y. Kataoka, A. Ishikawa, M. Matsunaga, M. Kobayashi, M. Kiguchi. J. Photochem. Photobiol., B: Biology, 187, 136 (2018). https://doi.org/10.1016/j.jphotobiol.2018.08.016

    Article  CAS  PubMed  Google Scholar 

  12. A. Saletnik, B. Saletnik, C. Puchalski. Molecules, 26, 1537 (2021). https://doi.org/10.3390/molecules26061537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. K. Elsayad, G. Urstoger, C. Czibula, C. Teichert, J. Gumulec, J. Balvan, M. Pohlt, U. Hirn. Cellulose, 27, 4209 (2020). https://doi.org/10.1007/s10570-020-03075-z

    Article  CAS  Google Scholar 

  14. X. Kang, A. Kirui, M.C.D. Widanage, F. Mentink-Vigier, D. J. Cosgrove, T. Wang. Nature Commun., 10, 347 (2019). https://doi.org/10.1038/s41467-018-08252-0

    Article  ADS  CAS  Google Scholar 

  15. T. Scharnweber, A. Hevia, A. Buras, E. van der Maaten, M. Wilmking. Sci. Total. Environ, 566-567, 1245 (2016). https://doi.org/10.1016/j.scitotenv.2016.05.182

    Article  ADS  CAS  PubMed  Google Scholar 

  16. E. Toumpanaki, D. U. Shah, S. J. Eichhorn. Adv. Mater., 33 (28), 2001613 (2021). https://doi.org/10.1002/adma.202001613

  17. L. A. Donaldson. IAWA J., 40 (4), 645 (2019). https://doi.org/10.1163/22941932-40190258

    Article  Google Scholar 

  18. Nanotribology and Nanomechanics. An Introduction, ed. B. Bhushan. 2nd ed. (Springer, Berlin–Heidelberg–NY., 2008)

  19. Nanomechanical Analysis of High Performance Materials, ed. A. Tiwari. (Springer Science + Business Media, Dordrech–Heidelberg–NY.–London, 2014), 348 p.

  20. Materials Characterization: Modern Methods and Applications, ed. N. M. Ranganathan (CRC Press, Boca Raton, Florida, 2015).

    Google Scholar 

  21. Yu. I. Golovin. Phys. Solid State, 63 (1), 1 (2021). https://doi.org/10.21883/FTT.2021.01.50395.171

    Article  ADS  CAS  Google Scholar 

  22. R. Garcia. Chem. Soc. Rev., 49, 5850 (2020). https://doi.org/10.1039/d0cs00318b

    Article  CAS  Google Scholar 

  23. B. R. Neugirg, S. R. Koebley, H. C. Schniepp, A. Fery. Nanoscale, 8, 8414 (2016). https://doi.org/10.1039/c6nr00863a

    Article  ADS  CAS  PubMed  Google Scholar 

  24. M. Cascione, V. De Matteis, R. Rinaldi, S. Leporatti. Microsc. Res. Technol., 80, 109 (2017). https://doi.org/10.1002/jemt.22696

    Article  Google Scholar 

  25. A. Melelli, O. Arnould, J. Beaugrand, A. Bourmaud. Molecules, 25, 632 (2020). https://doi.org/10.3390/molecules25030632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu. I. Golovin, V. I. Ivolgin, V. V. Korenkov, N. V. Korenkova, R. I. Ryabko. Kondens. Sredy Mezhfaznye Granitsy, 3 (2), 122 (2001) (in Russian).

    Google Scholar 

  27. Yu. I. Golovin. Phys. Solid State, 50 (12), 2205 (2008). https://doi.org/10.1134/S1063783408120019

    Article  ADS  CAS  Google Scholar 

  28. Yu. I. Golovin. Zavod. Lab., 75 (1), 45 (2009) (in Russian).

    Google Scholar 

  29. Yu. I. Golovin, Nanoindentirovanie i ego vozmozhnosti (Mashinostroenie, M., 2009) (in Russian).

  30. A. C. Fischer-Cripps. Nanoindentation (Springer, NY., 2011)

    Book  Google Scholar 

  31. Handbook of Nanoindentation with Biological Applications, ed. M. L. Oyen (Pan Stanford Publishing Pte. Ltd., 2011).

    Google Scholar 

  32. Nanoindentation in Materials Science, ed. J. Nemecek (InTech, London, 2012).

    Google Scholar 

  33. Nanomechanical Analysis of High Performance Materials, ed. A. Tiwari (Springer Science + Business Media. Dordrech–Heidelberg–NY.–London, 2014).

  34. Applied Nanoindentation in Advanced Materials, eds. A. Tiwari, S. Natarajan (John Wiley & Sons, NY., 2017).

    Google Scholar 

  35. L. J. Gibson. J. Royal Soc., Interface, 9, 2749 (2012). https://doi.org/10.1098/rsif.2012.0341

    Article  CAS  Google Scholar 

  36. M. Ioelovich. In book: Handbook of Nanocellulose and Cellulose Nanocomposites, eds. H. Kargarzadeh, I. Ahmad, S. Thomas, A. Dufresne (Wiley–VCH Verlag GmbH & Co. Weinheim, Germany, 2017). p. 51. https://doi.org/10.1002/9783527689972.ch2

  37. N. Mittal, F. Ansari, K. Gowda, C. Brouzet, P. Chen, P. T. Larsson, S.V. Roth, F. Lundell, L. Wagberg, N. A. Kotov, L. D. Soderberg. ACS Nano. 12 (7), 6378 (2018). https://doi.org/10.1021/acsnano.8b01084

    Article  CAS  PubMed  Google Scholar 

  38. S. Rongpipi, D. Ye, E. D. Gomez, E. W. Gomez. Frontieres in Plant Sci., 9, 1894 (2019). https://doi.org/10.3389/fpls.2018.01894

    Article  Google Scholar 

  39. N. V. Perepelkin, F. M. Borodich, A. E. Kovalev, S. N. Gorb. Nanomaterials, 10, 15 (2020). https://doi.org/10.3390/nano10010015

    Article  CAS  Google Scholar 

  40. P. Mania, M. Nowicki. Bull. Polish Academy Sci. Tech. Sci., 68 (5), 1237 (2020). https://doi.org/10.24425/bpasts.2020.134645

    Article  CAS  Google Scholar 

  41. A. C. Normand, A. M. Charrier, O. Arnould, A. L. Lereu. Scientific Reports, 11, 5739 (2021). https://doi.org/10.1038/s41598-021-84994-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. D. M. Meko, J. M. Friedman, R. Touchan, J. R. Edmondson, E. R. Griffin, J. A. Scott. Holocene., 25, 1093 (2015). https://doi.org/10.1177/0959683615580181

    Article  ADS  Google Scholar 

  43. H. Gärtner, P. Cherubini, P. Fonti, G. von Arx, L. Schneider, D. Nievergelt, A. Verstege, A. Bast, F. H. Schweingruber, U. Büntgen. J. Visualized Experiments, 97, e52337 (2015). https://doi.org/10.3791/52337

  44. X. Zhang, J. Li, X. Liu, Z. Chen. J. For. Res., 31 (2), 1002 (2019). https://doi.org/10.1007/s11676-019-01002-y

    Article  Google Scholar 

  45. R. J. Kaczka, R. Wilson. Dendrochronologia, 68, 125859 (2021). https://doi.org/10.1016/j.dendro.2021.125859

  46. A. Vannoppen, S. Maes, V. Kint, T. De Mil, Q. Ponette, J. Van Acker, J. V. den Bulcke, K. Verheyen, B. Muys. Dendrochronologia, 44, 66 (2017). https://doi.org/10.1016/j.dendro.2017.03.003

    Article  Google Scholar 

  47. J. V. den Bulcke, M. A. Boone, J. Dhaene, D. Van Loo, L. Van Hoorebeke, M. N. Boone, F. Wyffels, H. Beeckman, J. Van Acker, T. De Mil. Annals of Botany, 124, 837 (2019). https://doi.org/10.1093/aob/mcz126

    Article  Google Scholar 

  48. M. Dominguez-Delmas. Dendrochronologia, 62, 125731 (2020). https://doi.org/10.1016/j.dendro.2020.125731

  49. J. Martinez-Garcia, I. Stelzner, J. Stelzner, D. Gwerder, P. Schuetz. Dendrochronologia, 69, 125877 (2021). https://doi.org/10.1016/j.dendro.2021.125877

  50. M. Moria, S. Kuhara, K. Kobayashia, S. Suzuki, M. Yamada, A. Senoo. Dendrochronologia, 57, 125630 (2019). https://doi.org/10.1016/j.dendro.2019.125630

  51. K. Mayer, M. Grabner, S. Rosner, M. Felhofer, N. Gierlinger. Dendrochronologia, 64, 125781 (2020). https://doi.org/10.1016/j.dendro.2020.125781

  52. ISO group TC 164/SC 3/WG1 and ASTM E28.06.11. ISO/DIS 14577-1,2,3.

  53. GOST R 8.748-2011. State System for Ensuring the Uniformity of Measurements. Metallic Materials. Instrumented Indentation Test for Hardness and Materials Parameters. Part 1. Test Method (in Russian).

  54. W. C. Oliver, G. M. Pharr. J. Mater. Res., 7(6), 1564 (1992). https://doi.org/10.1557/JMR.1992.1564

    Article  ADS  CAS  Google Scholar 

  55. W. C. Oliver, G. M. Pharr. J. Mater. Res, 19 (1), 3 (2004). https://doi.org/10.1557/jmr.2004.19.1.3

    Article  ADS  CAS  Google Scholar 

  56. W. C. Oliver, G. M. Pharr. MRS Bull., 35 (11), 897 (2010). https://doi.org/10.1557/mrs2010.717

    Article  CAS  Google Scholar 

  57. Yu. I. Golovin, A. I. Tyurin, D. Yu. Golovin, A.A. Samodurov, I. A. Vasyukova. Russ. Phys. J., 63 (11), 2041 (2021). https://doi.org/10.17223/00213411/63/11/187

    Article  Google Scholar 

  58. Yu. I. Golovin, A. I. Tyurin, A. A. Gusev, S. M. Matveev, D. Yu. Golovin. Pis’ma Zh. Tekh. Fiz., 48 (4), 36 (2022) (in Russian). https://doi.org/10.21883/PJTF.2022.04.52083.19040

  59. I. Carrillo-Varela, P. Valenzuela, W. Gasitua, R. T. Mendoca. BioResources, 14 (3), 6433 (2019). https://doi.org/10.15376/biores.14.3.6433-6446

    Article  CAS  Google Scholar 

  60. S. Stanzl-Tschegg, W. Beikircher, D. Loidl. Holzforschung, 63, 443 (2009). https://doi.org/10.1515/HF.2009.085

    Article  CAS  Google Scholar 

  61. Y. Wu, X. Wu, F. Yang, H. Zhang, X. Feng, J. Zhang. Forests, 11, 1247 (2020). https://doi.org/10.3390/f11121247

    Article  Google Scholar 

  62. Y. H. Huang, B. H. Fei, Y. Yu, S. Q. Wang, Z. Q. Shi, R. J. Zhao. Bioresources, 7(3), 3028 (2012). https://doi.org/10.15376/biores.7.3.3028-3037

    Article  Google Scholar 

  63. W. T. Y. Tze, S. Wang, T. G. Rials, G. M. Pharr, S. S. Kelley. Composites: Part A. 38, 945 (2007). https://doi.org/10.1016/J.COMPOSITTESA.2006.06.018

    Article  Google Scholar 

  64. J. Wang, L. Wang, D. J. Gardner, S.M. Shaler, Z. Cai. Cellulose, 28, 4511 (2021). https://doi.org/10.1007/s10570-021-03771-4

    Article  Google Scholar 

  65. X. Wang, Y. Li, Y. Deng, W. Yu, X. Xie, S. Wang. BioResources, 11 (3), 6026 (2016). DOI. 11.3.6026-6039https://doi.org/10.15376/biores

  66. Electronic source. Available at: lesoteka.com

  67. Electronic source. Available at: extxe.com

  68. A. M. Borovikov, B. N. Ugolev. Spravochnik po drevesine: Spravochnik, Ed. B. N. Ugolev (Lesnaya Promyshlennost’, M., 1989) (in Russian).

  69. Electronic source. Available at: les.novosibdom.ru

  70. M. Vincent, Q. Tong, N. Terziev, G. Daniel, C. Bustos, W. G. Escobar, I. Duchesne. Wood Sci. Technol., 48 (1), 7 (2013). https://doi.org/10.1007/s00226-013-0580-5

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed at the Common Use Center of the Derzhavin Tambov State University and was supported by grant no. 21-14-00233 from the Russian Science Foundation (examination of the distribution of local mechanical properties) and by the Ministry of Science and Higher Education of the Russian Federation as part of the project under agreement no. 075-15-2021-709, unique project identifier RF-2296.61321X0037 (sample preparation, SEM studies).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Golovin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovin, Y.I., Tyurin, A.I., Gusev, A.A. et al. Scanning Nanoindentation as an Instrument of Studying Local Mechanical Properties Distribution in Wood and a New Technique for Dendrochronology. Tech. Phys. 68 (Suppl 2), S156–S168 (2023). https://doi.org/10.1134/S1063784223900449

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223900449

Keywords:

Navigation