Skip to main content
Log in

Analysis of Toroidal Alfven Eigenmode-Induced Fast Ion Losses in Globus-M2 Spherical Tokamak

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

With an increase of magnetic field up to 0.8 T and plasma current to 400 kA, fast ion losses rate in the discharges with toroidal Alfven eigenmodes decreased in tokamak Globus-M2 comparing with Globus-M tokamak discharges. Taking into account the data on the discharges with increased magnetic field and plasma current, the regression fit of neutral particle analyzer flux drop in energy channel close to neutral beam energy on relative eigenmode magnitude, the value of magnetic field and plasma current was analyzed. The power of flux drop dependence on TAE magnitude was found to be ~0.5 and inverse proportional on the value of product of magnetic field and plasma current, which is highly likely is determined only by plasma current due to weak dependence on magnetic field. The result obtained indicates that fast ion losses in Globus-M2, stimulated by toroidal Alfven eigenmodes are mostly determined by the shift of passing orbits to the plasma edge. With the increase of plasma current and magnetic field, neutron flux drops arising in the moments of toroidal mode bursts have also decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. W. W. Heidbrink. Phys. Plasmas, 15, 055501 (2008). https://doi.org/10.1063

  2. K.-L. Wong. Plasma Phys. Control. Fusion, 41, R1 (1999). https://doi.org/10.1088/0741-3335/41/1/001

    Article  CAS  Google Scholar 

  3. ITER Physics Expert Group on Energetic Particles, Heating and Current Drive and ITER Physics Basis Editors. Nucl. Fusion, 39, 2471 (1999). https://doi.org/10.1088/0029-5515/39/12/305

    Article  ADS  Google Scholar 

  4. S. E. Sharapov, M. Garcia-Munoz, M. A. Van Zeeland, B. Bobkov, I. G. J. Classen, J. Ferreira, A. Figueiredo, M. Fitzgerald, J. Galdon-Quiroga, D. Gallart, B. Geiger, J. Gonzalez-Martin, T. Johnson, P. Lauber, M. Mantsinen, F. Nabais, V. Nikolaeva, M. Rodriguez-Ramos, L. Sanchis- Sanchez, P. A. Schneider, A. Snicker, P. Vallejos and the AUG Team and the EUROfusion MST1 Team11. Plasma Phys. Control. Fusion, 60, 014026 (2018). https://doi.org/10.1088/1361-6587/aa90ee

  5. M. P. Gryaznevich, S. E. Sharapov. Plasma Phys. Controlled. Fusion, 46, S15 (2004). https://doi.org/10.1088/0741-3335/46/7/S02

    Article  ADS  CAS  Google Scholar 

  6. E. D. Fredrickson, C. Z. Cheng, D. Darrow, G. Fu, N. N. Gorelenkov, G. Kramer, S. S. Medley, J. Menard, L. Roquemore, Stutman, R. B. White. Phys. Plasmas, 16, 2852 (2003). https://doi.org/10.1063/1.1579493

    Article  ADS  CAS  Google Scholar 

  7. M. P. Gryaznevich, S. E. Sharapov. Nucl. Fusion, 40, 907 (2000). https://doi.org/10.1088/0029-5515/40/5/303

    Article  ADS  CAS  Google Scholar 

  8. V. V. Bulanin, V. K. Gusev, G. S. Kurskiev, V. B. Minaev, M. I. Patrov, A. V. Petrov, M. A. Petrov, Yu. . Petrov, A. Yu. Tel’nova, A. Yu. Yashin. Tech. Phys. Lett., 43, 1067 (2017). https://doi.org/10.1134/S1063785017120033

    Article  ADS  CAS  Google Scholar 

  9. Yu. V. Petrov, N. N. Bakharev, V. V. Bulanin, V. K. Gusev, F. S. Kurskiev, A. A. Martynovc, S. Yu. Medvedev, V. B. Minaev, M. I. Patrov, A. V. Petrov, N. V. Sakharov, P. B. Shchegolev, A. Yu. Telnova, S. Yu. Tolstyakov, A. Yu. Yashin. Plasma Phys. Rep., 25, 723 (2019). https://doi.org/10.1134/S1063780X19

    Article  ADS  Google Scholar 

  10. N. F. Cramer. The Physics of Alfven Waves (WILEY-VCH Verlag, Berlin, 2001), p. 201–204.

    Book  Google Scholar 

  11. E. D. Fredrickson, N. A. Crocker, D. S. Darrow, N. N. Gorelenkov, G. J. Kramer, S. Kubota, M. Podesta, R. B. White, A. Bortolon, S. P. Gerhardt, R. E. Bell, A. Diallo, B. LeBlanc, F. M. Levinton, H. Yuh. Nucl. Fusion, 53, 013006 (2013). https://doi.org/10.1088/0029-5515/53/1/013006

  12. O. M. Jones, M. Cecconello, K. G. McClements, I. Klimek, R. J. Akers, W. U. Boeglin, D. L. Keeling, A. J. Meakins, R. V. Perez, S. E. Sharapov, M. Turnyanskiy and the MAST team. Plasma Phys. Control. Fusion, 57, 125009 (2015). https://doi.org/10.1088/0741-3335/57/12/125009

  13. E. Hirvijoki, A. Snicker, T. Korpilo, P. Lauber, E. Poli, M. Schneller, T. Kurki-Suonio. Comp. Phys. Communications, 183, 2589 (2012). https://doi.org/10.1016/j.cpc.2012.07.009

    Article  ADS  CAS  Google Scholar 

  14. V. B. Minaev, V. K. Gusev, N. V. Sakharov, V. I. Varfolomeev, N. N. Bakharev, V. A. Belyakov, E. N. Bondarchuk, P. N. Brunkov, F. V. Chernyshev, V. I. Davydenko, V. V. Dyachenko, A. A. Kavin, S. A. Khitrov, N. A. Khromov, E. O. Kiselev. Nucl. Fusion, 57, 066047 (2017). https://doi.org/10.1088/1741-4326/aa69e0

  15. V. K. Gusev, N. N. Bakharev, V. A. Belyakov, B. Ya. Ber, D. N. Bondarchuk, V. V. Bulanin, A. S. Bykov, F. V. Chernyshev, E. V. Demina, V. V. Dyachenko, P. R. Goncharov, A. E. Gorodetsky, E. Z. Gusakov, A. D. Iblyaminova, A. A. Ivanov. Nucl. Fusion, 55, 104016 (2015). https://doi.org/10.1088/0029-5515/55/10/104016

  16. V. K. Gusev, V. E. Go E. Z. Gusakov, V. V. D’yachenko, M. A. Irzak, V. B. Minaev, E. E. Mukhin, A. N. Novokhatskii, K. A. Podushnikova, G. T. Razdobarin, N. V. Sakharov, E. N. Tregubova, V. S. Uzlov, O. N. Shcherbinin, V. A. Belyakov, A. A. Kavin, Yu. A. Kostsov, E. G. Kuz’min, V. F. Soikin, E. A. Kuznetsov, V. A. Yagnov. Tech. Phys., 44, 1054 (1999).https://doi.org/10.1134/1.1259469

    Article  CAS  Google Scholar 

  17. V. K. Gusev, A. V. Dech, L. A. Esipov, V. B. Minaev, A. G. Barsukov, G. B. Igon’kina, V. V. Kuznetsov, A. A. Panasenkov, M. M. Sokolov, G. N. Tilinin, A. V. Lupin, V. K. Markov. Tech. Phys., 52, 1127 (2007).https://doi.org/10.1134/S1063784207090058

    Article  CAS  Google Scholar 

  18. A. Yu. Telnova, V. B. Minaev, P. B. Shchegolev, N. . Bakharev, I. V. Shikhovtsev, V. I. Varfolomeev. J. Phys.: Conf. Ser., 1400, 077015 (2019). https://doi.org/10.1088/1742-6596/1400/7/077015

  19. N. N. Bakharev, F. V. Chernyshev, P. R. Goncharov, V. K. Gusev, A. D. Iblyaminova, VA. Kornev, G. S. Kurskiev, A. D. Melnik, V. B. Minaev, M. I. Mironov, M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, P. B. Shchegolev, S. Yu. Tolstyakov. Nucl. Fusion, 55, 043023 (2015). https://doi.org/10.1088/0029-5515/55/4/043023

  20. M. V. Iliasova, A. E. Shevelev, E. M. Khilkevitch, I. N. Chugunov, V. B. Minaev, D. B. Gin, D. N. Doinikov, I. A. Polunovsky, V. O. Naidenov, M. A. Kozlovskiy, M. F. Kudoyarov. Nucl. Instr. and Methods in Phys. Research, Section A, 983, 164590 (2020). https://doi.org/10.1016/j.nima.2020.164590

  21. N. N. Bakharev, I. M. Balachenkov, F. V. Chernyshev, I. N. Chugunov, V. V. Dyachenko, V. K. Gusev, M. V. Iliasova, E. M. Khilkevitch, N. A. Khromov, E. O. Kiselev, A. N. Konovalov, G. S. Kurskiev, V. B. Minaev, A. D. Melnik, I. V. Miroshnikov, A. N. Novokhatsky, M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, P. B. Shchegolev, A. E. Shevelev, O. M. Skrekel, A. Yu. Telnova, V. A. Tokarev, S. Yu. Tolstyakov, E. A. Tukhmeneva, V. I. Varfolomeev, A. V. Voronin. Plasma Phys. Rep., 46, 675 (2020).]https://doi.org/10.1134/S1063780X20070016

    Article  ADS  Google Scholar 

  22. Yu. V. Petrov, N. N. Bakharev, V. K. Gusev, V. B. Minaev, V. A. Kornev, G. S. Kurskiev, M. I. Patrov, N. V. Sakharov, S. Yu. Tolstyakov, P. B. Shchegolev. J. Plasma Phys., 81, 515810601 (2015). https://doi.org/10.1017/S0022377815001129

  23. N. N. Bakharev, F. V. Chernyshev, V. K. Gusev, E. O. Kiselev, G. S. Kurskiev, M. M. Larionova, A. D. Melnik, V. B. Minaev, M. I. Mironov, I. V. Miroshnikov, Yu. V. Petrov, N. V. Sakharov, P. B. Shchegolev, O. M. Skrekel, A. Yu. Telnova, E. A. Tukhmeneva, V. I. Varfolomeev. Plasma Phys. Control. Fusion, 62, 125010 (2020). https://doi.org/10.1088/1361-6587/abbe32

  24. I. M. Balachenkov, Yu. V. Petrov, V. K. Gusev, N. N. Bakharev, V. V. Bulanin, V. I. Varfolomeev, V. V. Dyachenko, N. S. Zhiltsov, E. O. Kiselev, A. N. Konovalov, S. V. Krikunov, G. S. Kurskiev, V. B. Minaev, M. I. Patrov, A. V. Petrov, A. M. Ponomarenko, N. V. Sakharov, A. Yu. Telnova, P. B. Shchegolev, A. Yu. Yashin. J. Phys.: Conf. Ser. 1697, 012212 (2020). https://doi.org/10.1088/1742-6596/1697/1/012212

Download references

Funding

Measurements of fast ion losses in Section 2 were provided with financial support of Russian Science Foundation (project 17-12-01177-P). The neutron flux measurements, reviewed in Section 3 was performed with financial support of Ministry of science and higher education of Russian Federation in scope of state task in science 0034-2021-0001. Measurements of basic plasma parameters were carried out on the Unique scientific facility “Spherical tokamak Globus-M,” which is incorporated in the Federal Joint Research Center Material science and characterization in advanced technology (project ID RFMEFI62119X0021) at the Ioffe Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Balachenkov.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balachenkov, I.M., Bakharev, N.N., Varfolomeev, V.I. et al. Analysis of Toroidal Alfven Eigenmode-Induced Fast Ion Losses in Globus-M2 Spherical Tokamak. Tech. Phys. 68, 436–442 (2023). https://doi.org/10.1134/S106378422390022X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378422390022X

Keywords:

Navigation