Skip to main content
Log in

Degradation of InGaN/GaN Quantum Well UV LEDs Caused by Short-Term Exposure to Current

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A comparative analysis of the initial stages of degradation of ultraviolet and blue LED structures with InGaN/GaN quantum wells is carried out. In the mode of accelerated aging, the structures were subjected to short-term, sequential exposure to currents of 80–190 mA at forward bias. The exposure time did not exceed three hours. There was an increase (up to 20%) in the external quantum efficiency. The most probable physical mechanisms explaining the changes in InGaN/GaN LEDs are presented and possible ways to slow down the aging of UV LEDs are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. J. Glaab, J. Haefke, J. Ruschel, M. Brendel, J. Rass, T. Kolbe, A. Knauer, M. Weyers, S. Einfeldt, M. Guttmann, C. Kuhn, J. Enslin, T. Wernicke, M. Kneissl. J. Appl. Phys., 123, 104502. https://doi.org/10.1063/1.5012608

  2. J. Glaab, J. Ruschel, T. Kolbe, A. Knauer, J. Rass, H. K. Cho, N. Lobo Ploch, S. Kreutzmann, S. Einfeldt, M. Weyers, M. Kneissl. IEEE Photonics Technol. Lett., 31 (7), 529. https://doi.org/10.1109/LPT.2019.2900156

  3. H. Xiu, Y. Zhang, J. Fu, Z. Ma, L. Zhao, J. Feng. Curr. Appl. Phys., 19, 20 (2019). https://doi.org/10.1016/j.cap.2018.10.019

    Article  ADS  Google Scholar 

  4. Z. Ma, A. Almalki, X. Yang, X. Wu, X. Xi, J. Li, S. Lin, X. Li, S. Alotaibi, M. Al huwayz, M. Henini, L. Zhao. J. Alloys Compd., 845, 156177 (2020). https://doi.org/10.1016/j.jallcom.2020.156177

  5. Z. Ma, H. Cao, S. Lin, X. Li, L. Zhao. Solid State Electron., 156, 92 (2019). https://doi.org/10.1016/j.sse.2019.01.004

    Article  ADS  CAS  Google Scholar 

  6. D. Monti, M. Meneghini, C. De Santi, G. Meneghesso, E. Zanoni., J. Glaab, J. Rass, S. Einfeldt, F. Mehnke, J. Enslin, T. Wernicke, M. Kneissl. IEEE Trans. Electron Devices, 64 (1), 200 (2017). https://doi.org/10.1109/TED.2016.2631720

    Article  ADS  CAS  Google Scholar 

  7. M. Meneghini, D. Barbisan, Y. Bilenko, M. Shatalov, J. Yang, R. Gaska, G. Meneghesso, E. Zanoni. Microelectron. Reliab., 50, 1538 (2010). https://doi.org/10.1016/j.microrel.2010.07.089

    Article  CAS  Google Scholar 

  8. A. L. Zakheim, M. E. Levinshtein, V. P. Petrov, A. E. Chernyakov, E. I. Shabunina, N. M. Shmidt. Semicond., 46 (2), 208 (2012). https://doi.org/10.1134/S106378261202025X

    Article  ADS  CAS  Google Scholar 

  9. A. Pinos, S. Marcinkevicius, M. S. Shur. J. Appl. Phys., 109, 103108 (2011). https://doi.org/10.1063/1.3590149

  10. Z. Gong, M. Gaevski, V. Adivarahan, W. Sun, M. Shatalov, M. Asif Khan. Appl. Phys. Lett., 88, 121106 (2006). https://doi.org/10.1063/1.2187429

  11. J. Ruschel, J. Glaab, B. Beidoun, N.L. Ploch, J. Rass, T. Kolbe, A. Knauer, M. Weyers, S. Einfeldt, M. Kneissl. Photonics Res., 7 (7), B36 (2019). https://doi.org/10.1364/PRJ.7.000B36

    Article  CAS  Google Scholar 

  12. H. Dong, T. Jia, J. Liang, A. Zhang, Z. Jia, W. Jia, X. Liu, Li, Y. Wu, B. Xu. Opt. Laser Technol., 129, 106309 (2020). https://doi.org/10.1016/joptlastec.2020.106309

  13. J. Huang, W. Liu, L. Yi, M. Zhou, D. Zhao, D. Jiang. Superlattices Microstruct., 113, 534 (2018). https://doi.org/10.1016/j.spmi.2017.11.036

    Article  ADS  CAS  Google Scholar 

  14. L. Wang, W. He, T. Zheng, Z. Chen, S. Zheng. Superlattices Microstruct., 133, 106188 (2019). https://doi.org/10.1016/j.spmi.2019.106188

  15. M. R. Kwon, T. H. Park, T. H. Lee, B. R. Lee, T. G. Kim. Superlattices Microstruct., 116, 215 (2018). https://doi.org/10.1016/j.spmi.2018.02.033

    Article  ADS  CAS  Google Scholar 

  16. N. Liu, H. Gu, Y. Wei, S. Zheng. Superlattices Microstruct., 141, 106492 (2020). https://doi.org/10.1016/j.spmi.2020.106492

  17. X. Wang, H.-Q. Sun, Z.-Y. Guo. Opt. Mater., 86, 133 (2018). https://doi.org/10.1016/j.optmat.2018.09.037

    Article  ADS  CAS  Google Scholar 

  18. R.K. Mondal, V. Chatterjee, S. Pal. Opt. Mater., 104, 109846. /https://doi.org/10.1016/j.optmat.2020.109846

  19. W. Guo, F. Xu, Y. Sun, L. Lu, Z. Qin, T. Yu, X. Wang, B. Shen. Superlattices Microstruct., 100, 941 (2016). https://doi.org/10.1016/j.spmi.2016.10.070

    Article  ADS  CAS  Google Scholar 

  20. Q. Wang, L. He, L. Wang, C. Li, C. He, D. Xiong, D. Lin, J. Wang, N. Liu, Z. Chen, M. He. Opt. Commun., 478, 126380. https://doi.org/10.1016/j.optcom.2020.126380

  21. Y. Zhang, L. Yu, K. Li, H. Pi, J. Diao, X. Wang, Y. Shen, C. Zhang, W. Hu, W. Song, S. Li. Superlattices Microstruct., 82, 151 (2015). https://doi.org/10.1016/j.spmi.2015.02.004

    Article  ADS  CAS  Google Scholar 

  22. L. Wang, G. Li, W. Song, H. Wang, X. Luo, Y. Sun, B. Zhang, J. Jiang, S. Li. Superlattices Microstruct., 122, 608 (2018). https://doi.org/10.1016/jspmi.2018.06.039

    Article  ADS  CAS  Google Scholar 

  23. A. M. Ivanov. Tech. Phys., 66 (1), 71 (2021). https://doi.org/10.1134/S1063784221010114

    Article  CAS  Google Scholar 

  24. N. Renso, C. De Santi, A. Caria, F. Dalla Torre, L. Zecchin, Meneghesso, E. Zanoni, M. Meneghini. J. Appl. Phys., 127, 185701 (2020). https://doi.org/10.1063/1.5135633

  25. F. Piva, C. De Santi, M. Deki, M. Kushimoto, H. Amano, Tomozawa, N. Shibata, G. Meneghesso, E. Zanoni, M. Meneghini. Microelectron. Reliab., 100101, 113418. https://doi.org/10.1016/j.microrel.2019.113418

  26. T. Yu, S. Shang, Z. Chen, Z. Qin, L. Lin, Z. Yang, G. Zhang. J. Lumin., 122–123, 696 (2007). https://doi.org/10.1016/j.jlumin.2006.01.263

  27. M. Buffolo, C. De Santi, M. Meneghini, D. Rigon, G. Meneghesso, E. Zanoni. Microelectron. Reliab., 55, 1754 (2015). https://doi.org/10.1016/j.microrel.2015.06.098

    Article  Google Scholar 

  28. J. Fu, L. Zhao, H. Cao, X. Sun, B. Sun, J. Wang, J. Li. AIP Adv. 6, 055219 (2016). https://doi.org/10.1063/L4953056

  29. I. N. Yassievich. Semicond. Sci. Technol. 9, 1433 (1994).

    Article  ADS  CAS  Google Scholar 

  30. M. La Grassa, M. Meneghini, C. De Santi, E. Zanoni, G. Meneghesso. Microelectron. Reliab., 64, 614 (2016). https://doi.org/10.1016/j.microrel.2016.07.131

    Article  Google Scholar 

  31. N. I. Bochkareva, A. M. Ivanov, A. V. Klochkov, V. A. Tarala, Y. G. Shreter. Tech. Phys. Lett., 42 (11), 1099 (2016). https://doi.org/10.1134/S1063785016110146

    Article  ADS  CAS  Google Scholar 

  32. S. Yu. Karpov. Opt. Quantum Electron. 47, 1293 (2015). https://doi.org/10.1007/s11082-014-0042-9

  33. Q. Lv, J. Gao, X. Tao, J. Zhang, C. Mo, X. Wang, C. Zheng, J. Liu. J. Lumin., 222, 117186 (2020). https://doi.org/10.1016/j.jlumin.2020.117186

  34. P. Sahare, B.K. Sahoo. Mater. Today: Proceedings, 28, 74. https://doi.org/10.1016/j.matpr.2020.01.303

  35. N. Trivellin, D. Montia, C. De Santia, M. Buffoloa, G. Meneghessoa, E. Zanonia, M. Meneghinia. Microelectron. Reliab., 88-90, 868 (2018). https://doi.org/10.1016/j.microrel.2018.07.145

    Article  Google Scholar 

  36. M. Meneghini, N. Trivellin, K. Orita, S. Takigawa, M. Yuri, T. Tanaka, D. Ueda, E. Zanoni, G. Meneghesso. IEEE Electron Device Lett., 30 (4), 356 (2009). https://doi.org/10.1109/LED.2009.2014570

    Article  ADS  CAS  Google Scholar 

  37. J. Hu, L. Yang, M.W. Shin. J. Phys. D: Appl. Phys., 41, 035107 (2008). https://doi.org/10.1088/0022-3727/41/3/035107

  38. D. Monti, M. Meneghini, C. De Santi, G. Meneghesso, E. Zanoni, A. Bojarska, P. Perlin. Microelectron. Reliab., 76–77, 584 (2017). https://doi.org/10.1016/j.microrel.2017.06.043

    Article  CAS  Google Scholar 

  39. M. Meneghini, G. Meneghesso, N. Trivellin, E. Zanoni, K. Orita, M. Yuri, D. Ueda. IEEE Electron Device Lett., 29 (6), 578 (2008). https://doi.org/10.1109/LED.2008.921098

    Article  ADS  CAS  Google Scholar 

  40. N. I. Bochkareva, Y. G. Shreter. Semicond., 52 (7), 934 (2018). https://doi.org/10.1134/S1063782618070035

    Article  ADS  CAS  Google Scholar 

  41. N. I. Bochkareva, A. M. Ivanov, A. V. Klochkov, Y. G. Shreter. J. Phys.: Conf. Ser., 1697, 012203 (2020). https://doi.org/10.1088/1742-6596/1697/1/012203

  42. D. Zhu, J. Xu, A. Noemaun, J. Kim, E. Schubert, M. Crawford, D. Koleske. Appl. Phys. Lett., 94, 081113 (2009). https://doi.org/10.1063/1.3089687

  43. M. Osinski, D.L. Barton. In coll.: Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, ed. by S. Nakamura, S.F. Chichibu. (CRC Press, 2000), p. 386. ISBN 9780748408368

    Google Scholar 

  44. I-H. Lee, A. Y. Polyakov, S.-M. Hwang, N. M. Shmidt, E. I. Shabunina, N. A. Tal’nishnih, N. B. Smirnov, V. Shchemerov, R. A. Zinovyev, S. A. Tarelkin, S. J. Pearton. Appl. Phys. Lett., 111, 062103 (2017). https://doi.org/10.1063/1.4985190

  45. H. R. Qi, S. Zhang, S. T. Liu, F. Liang, L. K. Yi, J. L. Huang, M. Zhou, Z. W. He, D. G. Zhao, D. S. Jiang. Superlattices Microstruct., 133, 106177 (2019). https://doi.org/10.1016/j.spmi.2019.106177

  46. Q. Xu, S. Zhang, B. Liu, T. Tao, Z. Xie, X. Xiu, D. Chen, P. Chen, P. Ha, Y. Zheng, R. Zhang. Superlattices Mi- crostruct., 119, 150 (2018). https://doi.org/10.1016/j.spmi.2018.04.053

    Article  ADS  CAS  Google Scholar 

  47. A. V. Mazalov, D. R. Sabitov, V. A. Kureshov, A. A. Padalitsa, A. A. Marmalyuk, R. Kh. Akchurin. Mod. Electron. Mater., 2, 45 (2016). https://doi.org/10.1016/j.moem.2016.09.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Ivanov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.M., Klochkov, A.V. Degradation of InGaN/GaN Quantum Well UV LEDs Caused by Short-Term Exposure to Current. Tech. Phys. 68, 428–435 (2023). https://doi.org/10.1134/S1063784223900085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223900085

Keywords:

Navigation