Skip to main content
Log in

Microwave Diagnostics of Electrical Discharges in an Artificial Cloud of Charged Water Drops

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The microwave diagnostics of discharges occurring in an artificial cloud of charged water droplets created in an open air simulating the environment of thunderclouds is implemented. An artificial cloud with a droplet size of about 1 µm is opaque in the visible range, so intra-cloud discharges are not available for investigation by traditional methods in the spark discharge physics based on the registration of visible discharge radiation. Microwaves pass through such a cloud without noticeable attenuation, they interact only with the plasma of discharges occurring in the cloud. The probing microwave radiation had a wavelength of 8 mm. The attenuation of microwaves passed through the cloud was measured with temporary resolution of about 10 ns. The temporal characteristics of intracloud discharges were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. E. M. Bazelyan, Yu. P. Rajzer. Iskrovoj razryad (MFTI, M., 1997) (in Russian).

  2. E. M. Bazelyan, Yu. P. Rajzer. Fizika molnii i molniezashchity (Fizmatlit, M., 2001) (in Russian).

  3. V. A. Rakov, M. A. Uman. Lightning: Physics and Effects (Cambridge Univ. Press, NY., 2003)

    Book  Google Scholar 

  4. K. V. Antsupov, I. P. Vereshchagin, M. A. Koshelev, M. Makalsky, V. S. Syssoev. Discharges from Cloud of Charged Aerosol, in Proc. 7th Int. Symp. on High Voltage Engineering (Tech. Univ. of Dresden, Dresden, Germany, 1991), p. 15-17.

  5. A. G. Temnikov, L. L. Chernenskij, A. V. Orlov, T. K. Gerastenok. Vestnik MEI, 4, 75 (2013) (in Russian).

    Google Scholar 

  6. A. Yu. Kostinskiy, V. S. Syssoev, N. A. Bogatov, E. A. Mareev, M. G. Andreev, L. M. Makalsky, D. I. Sukharevsky, V. A. Rakov. Geophys. Res. Lett., 42, 8165 (2015). (Supporting Information).https://doi.org/10.1002/2015GL065620

    Article  ADS  Google Scholar 

  7. A. Y. Kostinskiy, V. S. Syssoev, N. A. Bogatov, E. A. Mareev, M. G. Andreev, M. U. Bulatov, L. M. Makal’sky, D. I. Sukharevsky, V. A. Rakov. J. Geophys. Res. Atmos., 121 (16), 9756 (2016). https://doi.org/10.1002/2016JD025079

    Article  ADS  Google Scholar 

  8. V. A. Rakov, E. A. Mareev, M. D. Tran, Y. Zhu, N. A. Bogatov, A. Yu. Kostinskiy, V. S. Syssoev. IEEJ Transactions on Electrical and Electronic Engineering, 138 (5), 321 (2018). https://doi.org/10.1541/ieejpes.138.321

    Article  Google Scholar 

  9. Les Renardieres Group. Electra, 53, 31 (1977).

    Google Scholar 

  10. A. Kurimoto, O. Farish, D. J. Tedford. Proceedings Institution of Electrical Engineers, 125 (8), 767 (1978).

    Article  Google Scholar 

  11. Les Renardieres Group. Electra, 1981 (74), 67 (1981).

    Google Scholar 

  12. A. Gibert, J. Dupuy, M. Bayle, P. Bayle. J. Phys. D: Appl. Phys., 16 (8), 1493 (1983). https://doi.org/10.1088/0022-3727/16/8/016

    Article  ADS  CAS  Google Scholar 

  13. P. Domens, J. Dupuy, A. Gibert, R. Diaz, B. Hutzler, J. P. Riu, F. Ruhling. J. Phys. D: Appl. Phys., 21, 1613 (1988). https://doi.org/10.1088/0022-3727/21/11/011

    Article  ADS  CAS  Google Scholar 

  14. P. Domens, A. Gibert, J. Dupuy, F. Ruhling. J. Phys. D: Appl. Phys., 24 (7), 1088 (1991). https://doi.org/10.1088/0022-3727/24/7/010

    Article  ADS  Google Scholar 

  15. P. Ortega, P. Domens, A. Gibert, B. Hutzler, G. Riquel. J. Phys. D: Appl. Phys., 27, 2379 (1994). https://doi.org/10.1088/0022-3727/27/11/019

    Article  ADS  CAS  Google Scholar 

  16. T. Reess, P. Ortega, A. Gibert, P. Domens, P. Pignolet. J. Phys. D: Appl. Phys., 28 (11), 2306 (1995). https://doi.org/10.1088/0022-3727/28/11/011

    Article  ADS  CAS  Google Scholar 

  17. S. Larigaldie. J. Appl. Phys., 61, 90 (1987). https://doi.org/10.1063/1.338806

    Article  ADS  CAS  Google Scholar 

  18. T. Fukuchi, K. Nemoto. High-Speed Shadowgraphy and Interferometry Using an Acousto-Optic Laser Deflector, Proc. SPIE 5920, Ultrafast X-Ray Detectors, HighSpeed Imaging and Applications, 59200R (21 September 2005). https://doi.org/10.1117/12.616256

  19. X. Zhou, R. Zeng, C. Zhuang, S. Chen. Phys. Plasmas, 22, 063508 (2015). https://doi.org/10.1063/1.4922660

  20. Y. Cui, R. Zeng, C. Zhuang, X. Zhou, Z. Wang, S. Chen. arXiv: 1801.04664 [physics.app-ph].

  21. N. A. Bogatov, A. Y. Kostinskiy, V. S. Syssoev, M. G. Andreev, M. U. Bulatov, D. I. Sukharevsky, E. A. Mareev, V. A. Rakov. J. Geophysical Research: Atmospheres, 123, e2019JD031826 (2020). https://doi.org/10.1029/2019JD031826

  22. T. S. Basiev, I. P. Vereshchagin, L. M. Makal’sky, G. Z. Mirzabekyan, V. I. Savchenko, V. S. Syssoev, V. V Ushakov, G.M. Franchuk. Generatory zaryazhennogo aerozolya Izvestiya AN SSSR Energetika i transport, 5, 127 (1982) (in Russian).

  23. Yu. P. Rajzer. Fizika gazovogo razryada (Nauka, Fizmatlit, M., 1992) (in Russian).

  24. S. Solimeno, B. Crosignani, P. Di Porto. Guiding, Diffraction and Confinement of Optical Radiation (Academic Press, Orlando, 1986).

    Google Scholar 

  25. N. A. Bogatov, V. S. Syssoev, D. I. Suharevsky, M. U. Bulatov, M. G. Andreev, A. Yu. Kostinsky, E. A. Mareev, V. A. Rakov. Microwave Diagnostics for Investigation of Long Spark and Artificial Charged Aerosol Cloud, Proc. 15-th Int. Conf. On Atmospheric Electricity, June 15–20, 2014, Norman, Oklahoma, USA.

  26. A. Yu. Kostinskiy, N. A. Bogatov, V. S. Syssoev, E. A. Mareev, M. G. Andreev, M. U. Bulatov, D. I. Sukharevsky, V. A. Rakov. Unusual Plasma Formations Produced by Positive Streamers Entering the Cloud of Negatively Charged Water Droplets, preprint Earth and Space Science Open Archive. https://doi.org/10.1002/essoar.10508088.1

Download references

ACKNOWLEDGMENTS

The research was carried out using a grant from the Russian Science Foundation (project no. 19-19-00501). The authors would like to thank two reviewers for useful remarks and comments, that allowed to significantly improve the quality of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Syssoev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogatov, N.A., Syssoev, V.S., Sukharevsky, D.I. et al. Microwave Diagnostics of Electrical Discharges in an Artificial Cloud of Charged Water Drops. Tech. Phys. 68 (Suppl 2), S251–S256 (2023). https://doi.org/10.1134/S106378422390005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378422390005X

Keywords:

Navigation