Skip to main content
Log in

Generation of Surface Liquid Flow in Channels by Capillary Vibrations and Waves

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The generation of a directed flow on the water surface in channels with sources and resonators of capillary oscillations is detected and investigated. The surface flow is caused by the movement of the liquid through the gaps between the resonators, as well as between the resonator and the channel walls, under a curved surface that is locally deformed by the sources of capillary vibrations, the transfer of energy of the locally curved surface of the liquid by capillary waves, and the transmission of wave momentum to the particles of the liquid surface in one direction. It is shown that capillary waves together with the energy transfer an excess surface, the flux density of which is equal to the flux of the surface deformation. Moving devices with a capillary-wave accelerator of the surface liquid flow are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. V. A. Aleksandrov, A. I. Karpov. Khimicheskaya fizika i mezoskopiya, 21 (3), 345 (2019) (in Russian). https://doi.org/10.15350/17270529.2019.3.37

  2. D. V. Lyubimov, T. P. Lyubimova, A. A. Cherepanov. Dinamika poverkhnostei razdela v vibratsionnykh polyakh (Fizmatlit, M., 2003) (in Russian)

  3. S. Shklyaev, A. A. Alabuzhev, M. Khenner. Phys. Rev. E., 92, 013019 (2015). https://doi.org/10.1103/PhysRevE.92.013019

  4. Yu. D. Chashechkin. Fluid Dyn., 54 (7), 919 (2019). https://doi.org/10.1134/S0015462819070036

    Article  ADS  Google Scholar 

  5. A. Yu. Ilinykh. Fluid Dyn., 54 (7), 927 (2019). https://doi.org/10.1134/S001546281907005X

    Article  ADS  Google Scholar 

  6. X. Hu, T. Cubaud. Phys. Rev. Lett., 121, 044502 (2018). https://doi.org/10.1103/PhysRevLett.121.044502

  7. F. Lin, A. N. Quraishy, T. Tong, R. Li, G. Yang, M. Mohebinia, Yi Qiu, T. Visha, J. Zhao, W. Zhang, H. Zhong, H. Zhang, Ch. Zhou, X. Tong, P. Yu, J. Hu, S. Dong, D. Liu, Zh. Wang, J. R. Schaibley, J. Bao. ar-Xiv:2103.13564 [physics.flu-dyn]

  8. K. Gupta, K. M. Kolwankar, B. Gore, J. A. Dharmadhikariand, A. K. Dharmadhikari. Phys. Fluids, 32, 121701 (2020). https://doi.org/10.1063/5.0025469

  9. V. A. Aleksandrov. Khimicheskaya fizika i mezoskopiya, 22 (1), 49 (2020) (in Russian). https://doi.org/10.15350/17270529.2020.1.6

  10. F. Denner, G. Pare, S. Zaleski. Eur. Phys. J., Special Topics, 226, 1229 (2017). https://doi.org/10.1140/epjst/e2016-60199-2

    Article  ADS  Google Scholar 

  11. L. D. Landau, E. M. Lifshits. Gidrodinamika (Nauka, M., 1988) (in Russian).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Aleksandrov.

Ethics declarations

The author declares that he has no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, V.A. Generation of Surface Liquid Flow in Channels by Capillary Vibrations and Waves. Tech. Phys. 68 (Suppl 2), S228–S241 (2023). https://doi.org/10.1134/S1063784223900012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223900012

Keywords:

Navigation