Skip to main content
Log in

On an Iterative Method of Solving Direct and Inverse Problems for Parabolic Equations

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

This paper is devoted to approximate methods of solving direct and inverse problems for parabolic equations. An approximate method to solve the initial problem of a multidimensional nonlinear parabolic equation has been proposed. It is based on reducing the initial problem to a nonlinear multidimensional Fredholm intergral equation of the second kind, which is approximated by a system of nonlinear algebraic equatiions using a method of mechanical quadratures. In constructing a computational scheme, the points of local splines have been applied for optimal with respect to order approximation of a functional class that contains the solutions of parabolic equations. For the numerical implementation of the computational scheme, we have used the generalization of a continuous method of solving nonlinear operator equations that is described in the paper. In addition, the inverse problem of a parabolic equation with a fractional order derivative with respect to a time variable has been studied. Approximate methods of determining the fractional order of the time derivative and a coefficient at a spatial derivative have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural’ceva, Linear and Quasi-Linear Equations of Parabolic Type (Am. Math. Soc., Providence, 1988).

    Google Scholar 

  2. J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires (Dunod, Paris, 1969).

    Google Scholar 

  3. F. M. Morse and G. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), Vol. 2.

    Google Scholar 

  4. N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Holder Spaces (Nauchn. Kniga, Novosibirsk, 1998) [in Russian].

    Google Scholar 

  5. N. V. Krylov, Nonlinear Elliptic and Parabolic Equations of Second Order (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  6. M. O. Korpusov, Lecture Notes on the CourseNonlinear Elliptic and Parabolic Equations of Mathematical Physics for Postgraduates” (Fac. Phys. Lomonosov Moscow State Univ., Moscow, 2016) [in Russian].

  7. A. D. Polyanin, V. F. Zaitsev, and A. I. Zhurov, Methods of Solving Nonlinear Equations of Mathematical Physics and Mechanics (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  8. A. A. Samarskii and P. N. Vabishchevich, Computational Heat Transfer (Wiley, Chichester, 1995).

    Google Scholar 

  9. P. N. Vabishchevich, Computational Methods of Mathematical Physics. Non-Stationary Problems (Vuzovskaya Kniga, Moscow, 2008) [in Russian].

    Google Scholar 

  10. S. I. Kabanikhin, Inverse and Ill-Posed Problems: Theory and Applications (De Gruyter, Berlin–Boston, 2011). https://doi.org/10.1515/9783110224016

    Book  Google Scholar 

  11. H. A. Hasanov and V. G. Romanov, Introduction to Inverse Problems for Differential Equations (Springer, Cham, 2017). https://doi.org/10.1007/978-3-319-62797-7

    Book  Google Scholar 

  12. A. M. Denisov, Introduction to the Theory of Inverse Problems (Moscow State Univ., Moscow, 1994) [in Russian].

    Google Scholar 

  13. L. Beilina and M. V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems (Springer, New York, 2012). https://doi.org/10.1007/978-1-4419-7805-9

    Book  Google Scholar 

  14. I. V. Boikov and V. A. Ryazantsev, Zh. Srednevolzhsk. Mat. O-va 21 (2), 149 (2019). https://doi.org/10.15507/2079-6900.21.201902.149-163

    Article  Google Scholar 

  15. I. V. Boikov and V. A. Ryazantsev, About one iterative method for solving parabolic equations, in Proc. 21st Int. Saratov Winter SchoolModern Problems of the Theory of Functions and Their Applications(Saratov, January 31–February 4, 2022) (Saratov Univ., Saratov, 2022), Vol. 21, p. 50. EDN: BVALVE.

  16. J. L. Daleckii and M. G. Krein, Stability of Solutions of Differential Equations in Banach Space (Am. Math. Soc., Providence, 1974).

    Google Scholar 

  17. K. Dekker and J. G. Verwer, Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations (Elsevier, New York, 1984).

    Google Scholar 

  18. S. M. Lozinskii, USSR Comput. Math. Math. Phys. 13 (2), 232 (1973). https://doi.org/10.1016/0041-5553(73)90144-4

    Article  MathSciNet  Google Scholar 

  19. L. V. Kantorovich and G. P. Akilov, Functional Analysis (Pergamon, Oxford, 1982).

    Google Scholar 

  20. M. A. Krasnosel’skii, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskii, and Ya. V. Stetsenko, Approximate Solution of Operator Equations (Wolters-Noordhoff, Groningen, 1972). https://doi.org/10.1007/978-94-010-2715-1

    Book  Google Scholar 

  21. N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods (Binom. Laboratoriya Znanii, Moscow, 2011) [in Russian]. EDN: QJXMXL.

  22. M. K. Gavurin, Izv. Vyssh. Uchebn. Zaved., Mat., No. 5, 18 (1958).

  23. I. V. Puzynin, T. L. Boyadzhiev, S. I. Vinitskii, E. V. Zemlyanaya, T. P. Puzynina, and O. Chuluunbaatar, Phys. Part. Nucl. 38 (1), 70 (2007). https://doi.org/10.1134/S1063779607010030

    Article  Google Scholar 

  24. I. V. Boikov, Differ. Equations 48 (9), 1288 (2012). https://doi.org/10.1134/S001226611209008X

    Article  MathSciNet  Google Scholar 

  25. I. V. Boikov and V. A. Ryazantsev, Numer. Anal. Appl. 14 (1), 13 (2021). https://doi.org/10.1134/S199542392101002X

    Article  MathSciNet  Google Scholar 

  26. K. Lanczos, Applied Analysis (Prentice-Hall, Englewood Cliffs, NJ, 1956).

    Google Scholar 

  27. I. V. Boikov and N. P. Krivulin, Analytical and Numerical Methods of Identification of Dynamic Systems (Penza State Univ., Penza, 2016) [in Russian].

    Google Scholar 

  28. I. V. Boikov and N. P. Krivulin, Meas. Tech. 64 (12), 943 (2022). https://doi.org/10.1007/s11018-022-02026-3

    Article  Google Scholar 

  29. I. V. Boikov and V. A. Ryazantsev, Izv. Vyssh. Uchebn. Zaved., Povolzhsk. Reg. Fiz.-Mat. Nauki, No. 3 (55), 72 (2020). https://doi.org/10.21685/2072-3040-2020-3-6

  30. I. V. Boykov and V. A. Ryazantsev, J. Appl. Ind. Math. 15 (2), 175 (2021). https://doi.org/10.1134/S1990478921020010

    Article  MathSciNet  Google Scholar 

  31. F. Mainardi, On the initial value problem for the fractional diffusion-wave equation, in Waves and Stability in Continuous Media, Ed. by S. Rionero and T. Ruggert (World Sci., Singapore, 1994), pp. 246–251.

    Google Scholar 

  32. B. V. Uchaikin, Method of Fractional Derivatives (Artishok, Ulyanovsk, 2008) [in Russian].

    Google Scholar 

  33. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach Sci., Amsterdam, 1993).

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct thisparticular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Boykov.

Ethics declarations

The authors of this article declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boykov, I.V., Ryazantsev, V.A. On an Iterative Method of Solving Direct and Inverse Problems for Parabolic Equations. Tech. Phys. 68, 250–263 (2023). https://doi.org/10.1134/S1063784223700160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223700160

Keywords:

Navigation