Skip to main content
Log in

Probabilistic Model and Electrodynamic Analysis of Resonant Interaction of Microwave Radiation with 3D Magnetic Nanocomposites

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

On the basis of a deterministic electrodynamic model, a probabilistic model of microwave ferromagnetic resonance (FMR) in 3D magnetic nanocomposites based on opal matrices has been developed assuming that the FMR magnetic field of each of the magnetic nanoparticles (MNPs) is a random variable distributed according to the normal law. The results of calculating the values of the mathematical expectation of random values of the real and imaginary parts of the diagonal and off-diagonal components of the effective permeability tensor of a 3D magnetic nanocomposite are obtained depending on the strength of the bias field for several values of the dissipation parameter of MNPs at different values of the standard deviation of the random value of the FMR magnetic field of the nanoparticles at frequency  f = 26 GHz. The results are compared with the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. B. Rinkevich, V. V. Ustinov, M. I. Samoilovich, A. F. Belyanin, et al., Tekhnol. Konstr. Elektron. Appar., No. 4, 55 (2008).

  2. A. B. Rinkevich, D. V. Perov, M. I. Samoilovich, S. M. Kleshcheva, and E. A. Kuznetsov, J. Commun. Technol. Electron. 54 (8), 947 (2009). https://doi.org/10.1134/S1064226909080105

    Article  Google Scholar 

  3. M. Pardavi-Horvath, G. S. Makeeva, and O. A. Golovanov, J. Appl. Phys. 105 (7), 07C104 (2009). https://doi.org/10.1063/1.3070647

  4. R. H. Kodama, J. Magn. Magn. Mater. 200 (1–3), 359 (1999). https://doi.org/10.1016/S0304-8853(99)00347-9

    Article  ADS  CAS  Google Scholar 

  5. X. Batlle and A. Labarta, J. Phys. D: Appl. Phys. 35 (6), 201 (2002). https://doi.org/10.1088/0022-3727/35/6/201

    Article  Google Scholar 

  6. W. T. Coffey, D. S. F. Crothers, J. L. Dormann, et al., Phys. Rev. Lett. 80 (25), 5655 (1998). https://doi.org/10.1103/PhysRevLett.80.5655

    Article  ADS  CAS  Google Scholar 

  7. L. Z. Wu, J. Ding, H. B. Jiang, et al., J. Magn. Magn. Mater. 285 (1–2), 233 (2005). https://doi.org/10.1016/j.jmmm.2004.07.045

    Article  ADS  CAS  Google Scholar 

  8. V. P. Shilov, Yu. L. Raikher, J.-C. Bacri, et al., Phys. Rev. B 60 (17), 11902 (1999). https://doi.org/10.1103/PhysRevB.60.11902

    Article  ADS  CAS  Google Scholar 

  9. V. Castel, J. B. Youssef, and C. Brosseau, J. Nanomater. 2007, 027437 (2007). https://doi.org/10.1155/2007/27437

  10. A. H. Morrish and E. P. Valstyn, J. Phys. Soc. Jpn. 17, 392 (1961).

    Google Scholar 

  11. E. P. Valstyn, J. P. Hanton, and A. H. Morrish, Phys. Rev. 128 (5), 2078 (1962).

    Article  ADS  CAS  Google Scholar 

  12. V. K. Sharma and A. Baiker, J. Chem. Phys. 75 (12), 5596 (1981). https://doi.org/10.1063/1.441997

    Article  ADS  CAS  Google Scholar 

  13. Yu. L. Raikher and V. I. Stepanov, Phys. Rev. B 51 (22), 16428 (1995). https://doi.org/10.1103/PhysRevB.51.16428

    Article  ADS  CAS  Google Scholar 

  14. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (CRC Press, Boca Raton, 1996).

    Google Scholar 

  15. O. A. Golovanov and G. S. Makeeva, J. Commun. Technol. Electron. 54 (12), 1345 (2009). https://doi.org/10.1134/S106422690912002X

    Article  Google Scholar 

  16. E. S. Venttsel’, The Probability Theory (Gl. Izd. Fiz.-Math. Lit., Moscow, 1962) [in Russian].

    Google Scholar 

  17. V. V. Ustinov, A. B. Rinkevich, D. V. Perov, et al., J. Magn. Magn. Mater. 324 (1), 78 (2012). https://doi.org/10.1016/j.jmmm.2011.07.051

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Makeeva.

Ethics declarations

The author of this work declares that she has no conflicts of interest.

Additional information

Translated by N. Wadhwa

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makeeva, G.S. Probabilistic Model and Electrodynamic Analysis of Resonant Interaction of Microwave Radiation with 3D Magnetic Nanocomposites. Tech. Phys. 68, 236–244 (2023). https://doi.org/10.1134/S1063784223700135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223700135

Keywords:

Navigation