Skip to main content
Log in

The Effect of Chemical–Mechanical Processing of Silicon Wafers on Their Surface Morphology and Strength

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The mechanical strength of various silicon wafers with a thickness of 100 μm has been studied, depending on the methods of their preparation and the modes of their subsequent grinding or polishing, including chemical–mechanical (HMP). The plates were loaded using the ring-to-ring method, the magnitude of stresses and deflection under the small ring was determined by the finite element method. For all the samples studied, the profiles and roughness parameters of the plates were obtained by stylus profilometry and atomic force microscopy (AFM) when scanning the surface along the baseline and over the area. A direct correlation was found between the strength of the plates and the characteristic parameters of their surface profile (the average values of the magnitude and period of fluctuations in the height of the irregularities).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Notes

  1. It should be noted that in order to determine the small steps of changes in the height of the profile, it is necessary to carry out a larger number of measurements, as well as to consider the possible impact of various kinds of interference on them.

REFERENCES

  1. F. Kaule, B. Kohler, J. Hirsch, S. Schoenfelder, D. Lausch. Sol. Energy Mater. Sol. Cells, 185, 511 (2018). https://doi.org/10.1016/j.solmat.2018.05.057

    Article  CAS  Google Scholar 

  2. V. A. Popovich, A. Yunus, M. Janssen, I. M. Richardson, I. J. Bennett. Sol. Energy Mater. Sol. Cells, 95, 97 (2011). https://doi.org/10.1016/j.solmat.2010.04.038

    Article  CAS  Google Scholar 

  3. V A. Popovich, A. C. Riemslag, M. Janssen, I. J. Bennett, I. M. Richardson. Int. J. Mater. Sci., 3, 9 (2013).

    Google Scholar 

  4. H. Sekhar, T. Fukuda, K. Tanahashi, H. Takato, H. Ono, Y. Sampei, T. Kobayashi. Mater. Sci. Semicond. Process., 119, 105209 (2020). https://doi.org/10.1016/j.mssp.2020.105209

  5. J.-H. Woo, Y.-Ch. Kima, S.-H. Kima, J. Jang, H. N. Hanc, K. J. Choi, I. Kim, J.-Y. Kima. Scripta Mater., 140, 1 (2017). https://doi.org/10.1016/j.scriptamat.2017.06.047

    Article  CAS  Google Scholar 

  6. M. Boniecki, P. Kaminski, W. Wesolowski, K. Krzyzak. Maerialitye-Elektrniczne (Electron. Mater.), 44, 8 (2016).

    CAS  Google Scholar 

  7. D. Echizenya, H. Sakamoto, K. Sasaki. Proced. Eng., 10, 1443 (2011). https://doi.org/10.1016/j.proeng.2011.04.239

    Article  CAS  Google Scholar 

  8. A. M. Gabor, R. Janoch, A. Anselmo, J. L. Lincoln, H. Seigneur, Ch. Honeker. Proc. of the IEEE 43rd Photovoltaic Specialists Conf (PVSC) (Portland, OR, USA, 2016), v. 6.1, p. 3574. https://doi.org/10.1109/PVSC.2016.7750338

  9. S. Gouttebroze, H. I. Lange, X. Ma, R. Glockner, B. Emamifard, M. Syvertsen, M. Vardavoulias, A. Ulyashin. Phys. Status Solidi A, 210, 777 (2013). https://doi.org/10.1002/pssa.201300003

    Article  ADS  CAS  Google Scholar 

  10. G. Coletti, N. van der Borg, S. De Iuliis, C.J.J. Tool, L. J. Geerligs. Proc of the 21st European Photovoltaic Solar Energy Conference and Exhibition (Dresden, Germany, 2006), rx06032.

  11. V. A. Popovich, W. Geerstma, M. Janssen, I. J. Bennett, H. M. Richardson. EPD Congress 2015. Ed. by J. Yurko, A. Allanore, L. Bartlett, J. Lee, L. Zhang, G. Tranell, Y. Meteleva-Fischer, S. Ikhmayies, A. S. Budiman, P. Tripathy, G. Fredrickson (Springer, 2016), 241–248.

  12. E. Cereceda1, J. Barredo, J.R. Gutierrez, J.C. Jimeno. Proc. of the 25th European Photovoltaic Solar Energy Conference and Exhibition. 5th World Conference on Photovoltaic Energy Conversion (Valencia, Spain, 2010), 1665-68.

  13. V. V. Shpeizman, V. I. Nikolaev, A. O. Pozdnyakov, A. V. Bobyl’, R. B. Timashov, A. I. Averkin. Tech. Phys. 65 (1), 73 (2020). https://doi.org/10.1134/S1063784220010259

    Article  CAS  Google Scholar 

  14. S. E. Nikitin, V. V. Shpeizman, A. O. Pozdnyakov, S. I. Stepanov, R. B. Timashov, V. I. Nikolaev, E. I. Terukov, A. V. Bobyl. Mater. Sci. Semicond. Process., 15, 106386 (2022). https://doi.org/10.1016/j.mssp.2021.106386

  15. G. Rozgonyi, K. Youssef, P. Kulshreshtha, M. Shi, D. Good. Solid State Phenomena, 178–179, 79 (2011). https://doi.org/10.4028/www.scientific.net/SSP.178179.79

  16. A. Masolin, P. Bouchard, R. Martini, M. Bernacki. J. Mater. Sci., 48, 979 (2013). https://doi.org/10.1007/s10853-012-6713-7

    Article  ADS  CAS  Google Scholar 

  17. F. F. Wittman, V. P. Pukh. Zavodskaya laboratoriya, 29, 863 (1963) (in Russian).

  18. M. Oswald, T. Loewenstein, O. Anspach, J. Hirsch, D. Lausch, S. Schoenfelder. Proc of the European PV Solar Energy Conference and Exhibition (Amsterdam, Netherlands, 2014). https://doi.org/10.4229/EUPVSEC20142014-2AV.1.38

  19. M. Staudacher, T. Lube, J. Schlacher, P. Supancic. Open Ceramics, 6, 100101 (2021). https://doi.org/10.1016/j.oceram.2021.100101

  20. W. Weibull. J. Appl. Mech., 18, 293 (1951). https://doi.org/10.1115/1.4010337

    Article  ADS  Google Scholar 

  21. V. A. Stepanov, N. N. Peschanskaya, V. V. Speizman. Prochnost’ i relaksacionnye yavleniya v tverdykh telakh (Nauka, L., 1984), 245 p. (in Russian).

  22. N. I. Kargin, A. S. Gusev, S. M. Ryndya, A. D. Bakun, A. E. Ieshkin, A. A. Akovantseva, P. I. Misurkin, S. G. Lakeev, I. Matushchenko, S. F. Timashev. Sci. Vis., 9, 28 (2017).

    Google Scholar 

  23. M. Zaiser. Adv. Phys., 55, 185–245 (2006).

    Article  ADS  CAS  Google Scholar 

  24. J. Feder. Fractals (Plenum Press, NY., 1988)

    Book  Google Scholar 

  25. E. Bouchaud. J. Phys. Condens. Matter., 9, 4319 (1997). https://doi.org/10.1088/0953-8984/9/21/002

    Article  ADS  CAS  Google Scholar 

  26. V. A. Oborin, M. V. Bannikov, Y. V. Bayandin, M. A. Sokovikov, D. A. Bilalov, O. B. Naimark. PNRPU Mech. Bull., 2, 116 (2015). https://doi.org/10.15593/perm.mech/2015.2.07

    Article  Google Scholar 

  27. S. F. Timashev, Yu. S. Polyakov. Fluct. Noise Lett., 7, R15 (2007). https://doi.org/10.1142/S0219477507003829

    Article  Google Scholar 

  28. S. D. Andreev, L. S. Ivlev. Optika atmosfery i okeana, 10, 1450 (1997) (in Russian).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to A.V. Ankudinov for his help in carrying out work on the characterization of the surface of samples of different groups using AFM microscopy, I.L. Shulpina for performing work on X-ray topography and VS. Levitsky for profilometry of the surface of the initial plates of a large area using the methods of stylus profilometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shpeizman.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, V.A., Nikolaev, V.I., Shpeizman, V.V. et al. The Effect of Chemical–Mechanical Processing of Silicon Wafers on Their Surface Morphology and Strength. Tech. Phys. 68, 626–635 (2023). https://doi.org/10.1134/S1063784223080133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223080133

Keywords:

Navigation