Skip to main content
Log in

Investigation of the Characteristics of the InGaAs/InAlGaAs Superlattice for 1300 nm Range Vertical-Cavity Surface-Emitting Lasers

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

X-ray structural analysis and photoluminescence spectroscopy techniques were used to study heterostructures based on InGaAs/InAlGaAs superlattice for active regions of 1300 nm range lasers grown by molecular beam epitaxy. It is shown that the grown heterostructures have a high crystal quality. The perpendicular lattice mismatch of the average crystal lattice constant of the InGaAs/InAlGaAs superlattice with respect to the crystal lattice constant of the InP substrate is estimated at ~ +0.01%. An analysis of the photoluminescence spectra made it possible to conclude that the contribution of Auger recombination is insignificant in the studied range of excitation power density. Studies of vertical-cavity surface-emitting lasers with an active region based on the InGaAs/InAlGaAs superlattice made it possible to estimate the gain coefficient at a level of 650 cm–1 for the standard logarithmic approximation of the dependence of the gain on the current density. The transparency current density of the laser was 400–630 A/cm2, which is comparable to the record low values for the case of highly strained InGaAs–GaAs and InGaAsN–GaAs quantum wells in the spectral ranges of 1300 nm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. M. V. R. Murty, J. Wang, A. L. Harren, A.-N. Cheng, D. W. Dolfi, Z.-W. Feng, A. Sridhara, S. T. Joyo, J. Chu, L. M. Giovane. IEEE Photonics Technol. Lett., 33 (16), 812 (2021). https://doi.org/10.1109/lpt.2021.3069146

    Article  CAS  ADS  Google Scholar 

  2. Z. Ruan, Y. Zhu, P. Chen, Y. Shi, S. He, X. Cai, L. Liu. J. Lightwave Technol., 38 (18), 5100 2020.https://doi.org/10.1109/jlt.2020.2999526

  3. M. Gebski, D. Dontsova, N. Haghighi, K. Nunna, R. Yanka, A. Johnson, R. Pelzel, J.A. Lott. OSA Continuum, 3 (7), 1952 (2020). https://doi.org/10.1364/osac.396242

    Article  CAS  Google Scholar 

  4. VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers. Springer Series in Optical Sciences, ed. R. Michalzik (Springer, Berlin, Heidelberg, 2013). https://doi.org/10.1007/978-3-642-24986-0

    Book  Google Scholar 

  5. J. Minch, S. H. Park, T. Keating, S. L. Chuang. IEEE J. Quant. Electron., 35 (5), 771 (1999). https://doi.org/10.1109/3.760325

    Article  CAS  ADS  Google Scholar 

  6. J. C. L. Yong, J. M. Rorison, I. H. White. IEEE J. Quant. Electron., 38 (12), 1553 (2002).https://doi.org/10.1109/jqe.2002.805100

  7. Y.-K. Kuo, S.-H. Yen, M.-W. Yao, M.-L. Chen, B.‑T. Liou. Opt. Commun., 275 (1), 156 (2007). https://doi.org/10.1016/j.optcom.2007.02.025

    Article  CAS  ADS  Google Scholar 

  8. M. Muller, C. Grasse, M. C. Amann. In Proc. 2012 14th International Conference on Transparent Optical Networks (ICTON) (IEEE, Coventry, UK, 2012). https://doi.org/10.1109/icton.2012.6254394

  9. S. Spiga, M. C. Amann. “High-Speed InP-Based Long- Wavelength VCSELs,” Green Photonics and Electronics, ed. G. Eisenstein, D. Bimberg. (Springer, Cham, 2017), p. 17–35. https://doi.org/10.1007/978-3-319-67002-7_2

    Book  Google Scholar 

  10. C. Grasse, M. Mueller, T. Gruendl, G. Boehm, E. Roenneberg, P. Wiecha, J. Rosskopf, M. Ortsiefer, R. Meyer, M.-C. Amann. J. Cryst. Growth, 370, 217 (2013). https://doi.org/10.1016/j.jcrysgro.2012.06.051

  11. E. S. Kolodeznyi, S. S. Rochas, A. S. Kurochkin, A. V. Babichev, I. I. Novikov, A. G. Gladyshev, L. Y. Karachinskii, D. V. Denisov, Y. K. Bobretsova, A. A. Klimov, S. A. Blokhin, K. O. Voropaev, A. S. Ionov. Opt. Spectr., 125 (2), 238 (2018). https://doi.org/10.1134/s0030400x18080143

    Article  CAS  ADS  Google Scholar 

  12. M. Muller, P. Debernardi, C. Grasse, T. Grundl, M.‑C. Amann. IEEE Photonics Technol. Lett., 25 (2), 140 (2013). https://doi.org/10.1109/lpt.2012.2229975

    Article  ADS  Google Scholar 

  13. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho. Science, 264 (5158), 553 (1994). https://doi.org/10.1126/science.264.5158.553

    Article  CAS  PubMed  ADS  Google Scholar 

  14. L. Y. Karachinsky, I. I. Novikov, A. V. Babichev, A. G. Gladyshev, E. S. Kolodeznyi, S. S. Rochas, A. S. Kurochkin, Y. K. Bobretsova, A. A. Klimov, D. V. Denisov, K. O. Voropaev, A. S. Ionov, V. E. Bougrov, A. Y. Egorov. Opt. Spectr., 127 (6), 1053 (2019). https://doi.org/10.1134/s0030400x19120099

    Article  CAS  Google Scholar 

  15. C. A. Wang, B. Schwarz, D. F. Siriani, L. J. Missaggia, M. K. Connors, T. S. Mansuripur, D. R. Calawa, D. McNulty, M. Nickerson, J. P. Donnelly, K. Creedon, F. Capasso. IEEE J. Sel. Top. Quant. Electron., 23 (6), 1 (2017). https://doi.org/10.1109/jstqe.2017.2677899

    Article  CAS  Google Scholar 

  16. B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, F. Capasso. ACS Photonics, 4 (5), 1225 (2017). https://doi.org/10.1021/acsphotonics.7b00133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. S. S. Rochas, I. I. Novikov, A. G. Gladyshev, E. S. Kolodeznyi, A. V. Babichev, V. V. Andryushkin, V. N. Nevedomskii, D. V. Denisov, L. Ya. Karachinsky, A. Yu. Egorov, V. E. Bougrov. Tech. Phys. Lett., 46 (11), 1128 (2020). https://doi.org/10.1134/S1063785020110267

    Article  CAS  ADS  Google Scholar 

  18. G. M. Yang, M. H. MacDugal, V. Pudikov, P. D. Dapkus. IEEE Photon. Technol. Lett., 7 (11), 1228 (1995). https://doi.org/10.1109/68.473454

    Article  ADS  Google Scholar 

  19. S. A. Blokhin, S. N. Nevedomsky, M. A. Bobrov, N. A. Maleev, A. A. Blokhin, A. G. Kuzmenkov, A. P. Vasyl’ev, S. S. Rohas, A. V. Babichev, A. G. Gladyshev, I. I. Novikov, L. Ya. Karachinsky, D. V. Denisov, K. O. Voropaev, A. S. Ionov, A. Yu. Egorov, V. M. Ustinov. Semiconductors, 54, 1276 (2020). https://doi.org/10.1134/S1063782620100048

    Article  CAS  ADS  Google Scholar 

  20. S. Blokhin, A. Babichev, A. Gladyshev, L. Karachinsky, I. Novikov, A. Blokhin, S. Rochas, D. Denisov, K. Voropaev, A. Ionov, N. Ledentsov, A. Egorov. Electron. Lett., (just accepted) (2021). https://doi.org/10.1049/ell2.12232

  21. D. Pierscinska, P. Gutowski, G. Hal das, A. Kolek, I. Sankowska, J. Grzonka, J. Mizera, K. Piersinski, M. Bugajski. Semicond. Sci. Technol., 33 (3), 035006 (2018). https://doi.org/10.1088/1361-6641/aaa91a

  22. N. Volet, Optical Mode Control in Long-Wavelength Vertical-Cavity Surface-Emitting Lasers. (Diss. Ph. D. thesis, 2014). https://doi.org/10.5075/epfl-thesis-6064

  23. A. V. Babichev, L. Y. Karachinsky, I. I. Novikov, A. G. Gladyshev, S. A. Blokhin, S. Mikhailov, V. Iakovlev, A. Sirbu, G. Stepniak, L. Chorchos, J. P. Turkiewicz, K. O. Voropaev, A. S. Ionov, M. Agustin, N. N. Ledentsov, A. Y. Egorov. IEEE J. Quant. Electron., 53 (6), 1 (2017). https://doi.org/10.1109/jqe.2017.2752700

    Article  CAS  Google Scholar 

  24. S. Spiga, D. Schoke, A. Andrejew, G. Boehm, M.‑C. Amann. J. Lightwave Technol., 35 (15), 3130 (2017). https://doi.org/10.1109/jlt.2017.2660444

    Article  CAS  ADS  Google Scholar 

  25. I. Sankowska, P. Gutowski, A. Jasik, K. Czuba, J. Dabrowski, M. Bugajski. J. Appl. Crystallogr., 50 (5), 1376 (2017). https://doi.org/10.1107/s1600576717011815

    Article  CAS  ADS  Google Scholar 

  26. G. Capuzzo, D. Kysylychyn, R. Adhikari, T. Li, B. Faina, A. Tarazaga Martin-Luengo, A. Bonanni. Sci. Rep., 7 (1), 42697 (2017). https://doi.org/10.1038/srep42697

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. I. B. Karomi, A. T. Zakar, M. S. Al-Ghamdi. IOP Conf. Ser.: Mater. Sci. Eng., 1126 (1), 012004 (2021). https://doi.org/10.1088/1757-899x/1126/1/012004

  28. Y. Huang, Z. Pan, R. Wu. J. Appl. Phys., 79 (8), 3827 (1996). https://doi.org/10.1063/1.361809

    Article  CAS  ADS  Google Scholar 

  29. G. R. Hadley. Opt. Lett., 20 (13), 1483 (1995). https://doi.org/10.1364/OL.20.001483

    Article  CAS  PubMed  ADS  Google Scholar 

  30. D. Ellafi, V. Iakovlev, A. Sirbu, G. Suruceanu, Z. Mickovic, A. Caliman, A. Mereuta, E. Kapon. IEEE J. Sel. Top. Quant. Electron., 21 (6), 414 (2015). https://doi.org/10.1109/jstqe.2015.2412495

  31. S. A. Blokhin, M. A. Bobrov, A. A. Blokhin, A. P. Vasil’ev, A. G. Kuz’menkov, N. A. Maleev, S. S. Rochas, A. G. Gladyshev, A. V. Babichev, I. I. Novikov, L. Ya. Karachinsky, D. V. Denisov, K. O. Voropaev, A. S. Ionov, A. Yu. Egorov, V. M. Ustinov. Tech. Phys. Lett. 46, 1257 (2020). https://doi.org/10.1134/S1063785020120172

    Article  CAS  ADS  Google Scholar 

  32. J. Bengtsson, J. Gustavsson, A' Haglund, A. Larsson, A. Bachmann, K. Kashani-Shirazi, M.-C. Amann. Opt. Express, 16 (25), 20789 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  33. S. A. Blokhin, M. A. Bobrov, A. A. Blokhin, A. G. Kuzmenkov, N. A. Maleev, V. M. Ustinov, E. S. Kolodeznyi, S. S. Rochas, A. V. Babichev, I. I. Novikov, A. G. Gladyshev, L. Ya. Karachinsky, D. V. Denisov, K. O. Voropaev, A. S. Ionov, A. Yu. Egorov. Opt. Spectr. 127 (1), 140 (2019). https://doi.org/10.1134/S0030400X1907004X

    Article  CAS  ADS  Google Scholar 

  34. S. Adachi. J. Appl. Phys. 66 (12), 6030 (1989). https://doi.org/10.1063/1.343580

    Article  CAS  ADS  Google Scholar 

  35. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, H. Sigg. J. Appl. Phys., 87 (11), 7825 (2000). https://doi.org/10.1063/1.373462

    Article  CAS  ADS  Google Scholar 

  36. T. A. DeTemple, C. M. Herzinger. IEEE J. Quant. Electron., 29 (5), 1246 (1993). https://doi.org/10.1109/3.236138

    Article  CAS  ADS  Google Scholar 

  37. T. Higashi, T. Yamamoto, S. Ogita, M. Kobayashi. IEEE J. Sel. Topics Quant. Electron., 3 (2), 513 (1997). https://doi.org/10.1109/islc.1996.553742

    Article  CAS  ADS  Google Scholar 

  38. N. Tansu, Y.-L. Chang, T. Takeuchi, D. P. Bour, S. W. Corzine, M. R. T. Tan, L. J. Mawst. IEEE J. Quant. Electron., 38 (6), 640 (2002). https://doi.org/10.1109/jqe.2002.1005415

    Article  CAS  ADS  Google Scholar 

  39. T. Kageyama, T. Miyamoto, S. Makino, Y. Ikenaga, F. Koyama, K. Iga. IEICE Trans. Electron., E85-C(1), 71 (2002). https://doi.org/10.7567/ssdm.1999.le-1-1

    Article  Google Scholar 

  40. J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren, J. E. Bowers. Appl. Phys. Lett., 72 (15), 1814 (1998). https://doi.org/10.1063/1.121318

    Article  CAS  ADS  Google Scholar 

  41. S. Mogg, N. Chitica, U. Christiansson, R. Schatz, P. Sundgren, C. Asplund, M. Hammar. IEEE J. Quant. Electron., 40 (5), 453 (2004). https://doi.org/10.1109/jqe.2004.826421

    Article  CAS  ADS  Google Scholar 

  42. H. Riechert, A. Ramakrishnan, G. Steine. Semicond. Sci. Technol., 17 (8), 892-897 (2002). https://doi.org/10.1088/0268-1242/17/8/318

    Article  CAS  ADS  Google Scholar 

  43. H. Shimizu, K. Kumada, N. Yamanaka, N. Iwai, T. Mukaihara, A. Kasukawa. IEEE J. Quant. Electron., 36 (6), 728 (2000). https://doi.org/10.1109/3.845730

    Article  CAS  ADS  Google Scholar 

  44. M. Rosenzweig, M. Mohrle, H. Duser, H. Venghaus. IEEE J. Quant. Electron., 27 (6), 1804 (1991). https://doi.org/10.1109/3.90008

    Article  CAS  ADS  Google Scholar 

  45. N. Tansu, J.-Y. Yeh, L. J. Mawst. IEEE J. Sel. Topics Quant. Electron., 9 (5), 1220 (2003).https://doi.org/10.1109/jstqe.2003.820911

  46. C. Y. Liu, S. F. Yoon, W. J. Fan, J. W. R. Teo, S. Yuan. Opt. Express, 13 (22), 9045 (2005). https://doi.org/10.1364/opex.13.009045

    Article  CAS  PubMed  ADS  Google Scholar 

  47. H. Wada, K. Takemasa, T. Munakata, M. Kobayashi, T. Kamijoh. IEEE J. Sel. Topics Quantum Electron., 5 (3), 420–427 (1999). https://doi.org/10.1109/2944.788400

    Article  CAS  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

A.M. Nadtochii acknowledges support from the Fundamental Research Program of the National Research University Higher School of Economics in optical measurements.

Funding

This study was supported financially by the Ministry of Science and Higher Education of the Russian Federation, research project no. 2019-1442. X-ray diffraction curves were analyzed using the equipment provided by the Materials Science and Diagnostics in Advanced Technologies common use center (Ioffe Institute, St. Petersburg).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Blokhin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blokhin, S.A., Babichev, A.V., Gladyshev, A.G. et al. Investigation of the Characteristics of the InGaAs/InAlGaAs Superlattice for 1300 nm Range Vertical-Cavity Surface-Emitting Lasers. Tech. Phys. 68, 549–557 (2023). https://doi.org/10.1134/S1063784223080078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223080078

Keywords:

Navigation