Skip to main content
Log in

The Simulation of Proton Beam Passage through Thin Gold Films

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The results of calculating the energy spectra of protons transmitted and reflected from thin layers of gold are presented. The simulation results are compared with experimental data. It is shown that the stopping measurement results are affected by such factors as the multiple scattering, the geometry of the experiment, and the morphology and roughness of the target. An analysis of the angular dependence for particles passing through a thin film makes it possible to obtain information about the interaction potential between a particle and a solid. The obtained results on the potential agree with the data from experiments on the reflection of particles from the surface of a solid and differ markedly from the data on the potential determined from the scattering of particles in the gas phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

REFERENCES

  1. M. T. Robinson, I. M. Torrens. Phys. Rev. B, 9 (12), 5008 (1974). https://doi.org/10.1103/PhysRevB.9.5008

    Article  ADS  CAS  Google Scholar 

  2. V. M. Kivilis, E. S. Parilis, N. Yu. Turaev. DAN, 173 (4), 805 (1967).

    CAS  Google Scholar 

  3. V. E. Yurasova, V. I. Shulga, D. S. Karpuzov. Can. J. Phys., 46 (6), 759 (1968). https://doi.org/10.1139/p68-094

    Article  ADS  CAS  Google Scholar 

  4. E. S. Mashkova, V. A. Molchanov, Primenenie rasseyaniya ionov dlya analiza tverdykh tel (Energoatomizdat, M., 1995), 176 p.

  5. W. Eckstein. Computer Simulation of Ion-Solid Interactions (Springer, Berlin 1991).

    Book  Google Scholar 

  6. J. F. Ziegler, J.P. Biersack. SRIM. Available at: http://www.srim.org.

  7. Electronic source. Available at: http://www.oecd-nea.org/tools/abstract/detail/psr-0137.

  8. G. E. Thomas, L. J. Beckers, J. J. Vrakking, B. R. Koning. J. Cryst. Growth, 56 (3), 557 (1982).https://doi.org/10.1016/0022-0248(82)90039-2

  9. M. Hautala. Phys. Rev. B, 30 (9), 5010 (1984). https://doi.org/10.1103/PhysRevB.30.5010

    Article  ADS  CAS  Google Scholar 

  10. I. Koponen, M. Hautala. Nucl. Instr. Meth. Phys. Res. B, 33 (1–4), 112 (1988). https://doi.org/10.1016/0168-583X(88)90525-3

    Article  ADS  Google Scholar 

  11. B. Bruckner, P. M. Wolf, P. Bauer, D. Primetzhofer. Nucl. Instr. Meth. Phys. Res. B, 489, 82 (2021). https://doi.org/10.1016/j.nimb.2020.08.005

    Article  ADS  CAS  Google Scholar 

  12. S. N. Markin, D. Primetzhofer, S. Prusa, M. Brunmayr, G. Kowarik, F. Aumayr, P. Bauer. Phys. Rev. B, 78 (19), 195122 (2008). https://doi.org/10.1103/PhysRevB.78.195122

  13. M. Fama, G. H. Lantschner, J. C. Eckardt, C. D. Denton, N. R. Arista. Nucl. Instr. Meth. Phys. Res. B, 164-165, 241 (2000). https://doi.org/10.1016/S0168-583X(99)01086-1

    Article  ADS  CAS  Google Scholar 

  14. H. H. Andersen, A. Csete, T. Ichioka, H. Knudsen, S. P. Moller, U. I. Uggerhoj. Nucl. Instr. Meth. Phys. Res. B, 194, 217 (2002). https://doi.org/10.1016/S0168-583X(02)00692-4

    Article  ADS  CAS  Google Scholar 

  15. D. S. Meluzova, P. Yu. Babenko, A. P. Shergin, A. N. Zinoviev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 13, 335 (2019). https://doi.org/10.1134/S1027451019020332

    Article  CAS  Google Scholar 

  16. H. Paul, A. Schinner. Phys. Scripta, 69, C41 (2004). https://doi.org/10.1238/Physica.Regular.069a00C41

    Article  CAS  Google Scholar 

  17. P. Sigmund, A. Schinner. Nucl. Instr. Meth. Phys. Res. B, 410, 78 (2017). https://doi.org/10.1016/j.nimb.2017.08.011

    Article  ADS  CAS  Google Scholar 

  18. D. Goebl, K. Khalal-Kouache, D. Roth, E. Steinbauer, P. Bauer. Phys. Rev. A, 88 (3), 032901 (2013). https://doi.org/10.1103/PhysRevA.88.032901

  19. Electronic source. NDS – data base. Available at: https://www-nds.iaea.org.

  20. R. Blume, W. Eckstein, H. Verbeek. Nucl. Instr. Meth., 168 (1–3), 57 (1980). https://doi.org/10.1016/0029-554X(80)91231-8

    Article  CAS  Google Scholar 

  21. K. Morita, H. Akimune, T. Suita. J. Phys. Soc. Jpn., 25 (6), 1525 (1968). https://doi.org/10.1143/JPSJ.25.1525

    Article  ADS  CAS  Google Scholar 

  22. C. D. Archubi, J. C. Eckardt, G. H. Lantschner, N. R. Arista. Phys. Rev. A, 73 (4), 042901 (2006). https://doi.org/10.1103/PhysRevA.73.042901

  23. J. E. Valdes, G. Martinez-Tamayo, G. H. Lantschner. J. C. Eckardt, N. R. Arista. Nucl. Instr. Meth. Phys. Res. B, 73 (3), 313 (1993). https://doi.org/10.1016/0168-583X(93)95744-P

    Article  ADS  Google Scholar 

  24. A. N. Zinoviev, P. Yu. Babenko. Pis’ma v ZhETF, 115 (9) 603 (2022). https://doi.org/10.31857/S1234567822090105

    Article  Google Scholar 

  25. J. C. Eckardt, G. H. Lantschner. Nucl. Instr. Meth. Phys. Res. B, 175–177, 93 (2001). https://doi.org/10.1016/S0168-583X(00)00623-6

    Article  ADS  Google Scholar 

  26. E. A. Figueroa, E. D. Cantero, J. C. Eckardt, G. H. Lantschner, N. R. Arista. Phys. Rev. A, 75 (6), 064902 (2007). https://doi.org/10.1103/PhysRevA.75.064902

  27. C. D. Archubi, N. R. Arista. Phys. Rev. A, 96 (6), 062701 (2017). https://doi.org/10.1103/PhysRevA.96.062701

  28. C. C. Montanari, C. D. Archubi, D. M. Mitnik, J. E. Miraglia. Phys. Rev. A, 79 (3), 032903 (2009). https://doi.org/10.1103/PhysRevA.79.032903

  29. M. M. Jakas, N. E. Capuj. Nucl. Instr. Meth. Phys. Res. B, 36, 491 (1989). https://doi.org/10.1016/0168-583X(89)90354-6

    Article  ADS  Google Scholar 

  30. F. Besenbacher, J. U. Andersen, E. Bonderup. Nucl. Instr. Meth., 168, 1 (1980). https://doi.org/10.1016/0029-554X(80)91224-0

    Article  CAS  Google Scholar 

  31. S. Ya. Petrov, V. I. Afanasyev, A. D. Melnik, M. I. Mironov, A. S. Navolotsky, V. G. Nesenevich, M. P. Petrov, F. V. Chernyshev, I. V. Kedrov, E. G. Kuzmin, B. V. Lyublin, S. S. Kozlovski, A. N. Mokeev. Phys. Atom. Nuc-l., 80 (7), 1268 (2017). https://doi.org/10.1134/S1063778817070109

    Article  ADS  CAS  Google Scholar 

  32. C. Archubi, C. Denton, J. C. Eckardt, G. H. Lantschner, F. Lovey, J. Valdes, C. Parra, F. Zappa, N. R. Arista. Phys. Stat. Sol. B, 241, 2389 (2004). https://doi.org/10.1002/pssb.200304862

    Article  ADS  CAS  Google Scholar 

  33. J. P. Biersack, E. Steinbauer, P. Bauer. Nucl. Instr. Meth. Phys. Res. B, 61, 77 (1991). https://doi.org/10.1016/0168-583X(91)95564-T

    Article  ADS  Google Scholar 

Download references

Funding

The study was supported by a grant from the Russian Science Foundation no. 22-22-20081 (https://rscf.ru/project/22-22-20081/) and supported by a grant from the St. Petersburg Science Foundation in accordance with the agreement dated April 14, 2022 no. 22/2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Yu. Babenko.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babenko, P.Y., Zinoviev, A.N. & Tensin, D.S. The Simulation of Proton Beam Passage through Thin Gold Films. Tech. Phys. 68, 521–529 (2023). https://doi.org/10.1134/S1063784223080030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223080030

Keywords:

Navigation