Skip to main content
Log in

Scenario Modeling of Regional Epidemics of SARS-COV-2 and Analysis of Immunological Aspects of New Expected COVID Waves

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The SARS-COV-2 problem has not been resolved. Waves of the number of recorded infections are continuing locally in the summer of 2023. The threat of repeated epidemic waves will remain relevant for at least another 3 years. In East Asian countries, the number of repeated cases of infection is increasing exponentially due to the immunosuppression caused by long-term replication of SARS-COV-2 in many previously ill people. Repeated COVID illnesses deplete the cell population of CD4 T-lymphocytes. The equation scheme of the SIRS state change models for the COVID epidemic is fundamentally incorrect: each new infection makes a person even more vulnerable. The rate of evolution of the Omicron branch is not decreasing. The new strain BA.2.86 “Pirola” in August carries 36 new mutations compared to the dominant XBB.1.5 “Kraken” in the spring and competes with other newcomers to the zoo of strains: EG.5 Eris, XBB.2.3 Acrux, and FL. 1.5.1 Fornax. SARS-COV-2 differs from related viruses in having a greater rate of renewal of antigens in its S and E proteins. The number of isolated strains is approaching 2000. The key factor in stopping the evolution of the virus is the immunological factor of heterogeneity of epitopes of the population of T-lymphocytes produced in response to infections by past strains. Now, during evolution, the coronavirus needs to find a balance between two tasks: avoiding neutralization by our antibodies and the goal of effectively binding to the cellular receptor ACE2. BA.2.86 avoids neutralization better than XBB and EG, but its transmissibility is not high. “Immuno-evasive” strains are now not so infectious and are still causing regional outbreaks of infections. The diversity of mutational variants of the RNA virus with competition between the evolutionary branches of its strains leads, after attenuation, to new repeated oscillations in the number of infections: the COVID-wave effect. The convergent strain is capable of causing a new outbreak and a global series of slowly fading COVID waves in the winter of 2024. Regional scenarios for COVID-19 epidemics are unusual. The frequency and amplitude of COVID-19 incidence peaks vary significantly across regions, and the author has classified three scenarios. This work provides a model description of the local effects of specific scenarios of wave-like epidemic dynamics. Equations with delay are proposed for complex forms of oscillatory dynamics, supplemented with situational functions of epidemic attenuation. Numerical solutions were obtained for both collapsing and damping oscillations with the possibility of a new outbreak, which made it possible to describe the emerging effect of a single extreme COVID wave in Chile and New York after the activation of infection chains. The model described the occurrence of a sharp peak of infections with a rapid oscillatory decay. The developed model scenarios are very different. Equations with situational functions describe situations of local epidemic waves, a long series of short-term peaks with successively increasing amplitude, as in the epidemic graphs in Japan and Australia, but not in Belgium. Romania in october expects expressive COVID wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. A. Yu. Perevaryukha, Tech. Phys. 67 (6), 523 (2022). https://doi.org/10.1134/S1063784222070088

    Article  CAS  Google Scholar 

  2. A. Yu. Perevaryukha, Tech. Phys. 67 (9), 651 (2022). https://doi.org/10.1134/S1063784222090043

    Article  CAS  Google Scholar 

  3. I. V. Trofimova, A. Yu. Perevaryukha, and A. B. Manvelova, Tech. Phys. Lett. 48 (12), 305 (2022). https://doi.org/10.1134/S1063785022110025

    Article  ADS  CAS  Google Scholar 

  4. V. V. Mikhailov, A. Yu. Perevaryukha, and I. V. Trofimova, Tech. Phys. Lett. 48 (12), 301 (2022). https://doi.org/10.1134/S1063785022110013

    Article  ADS  CAS  Google Scholar 

  5. A. Yu. Perevaryukha, J. Comput. Syst. Sci. Int. 50, 491 (2011). https://doi.org/10.1134/S1064230711010151

    Article  MathSciNet  Google Scholar 

  6. D. Dudakova, V. Anokhin, M. Dudakov, and A. L. Ronzhin, Inf. Autom. 6 (21), 1359 (2022). https://doi.org/10.15622/ia.21.6.10

    Article  Google Scholar 

  7. A. Yu. Perevaryukha, Numer. Anal. Appl. 5, 254 (2012). https://doi.org/10.1134/S199542391203007X

    Article  Google Scholar 

  8. A. Sukhinov, Yu. Belova, A. Nikitina, and V. Sidoryakina, Mathematics 10 (12), 2092 (2022). https://doi.org/10.3390/math10122092

    Article  Google Scholar 

  9. G. Yu. Riznichenko, N. E. Belyaeva, A. N. Diakonova, et al., Biophysics 65 (5), 754 (2020). https://doi.org/10.1134/S0006350920050152

    Article  CAS  Google Scholar 

  10. P. V. Veshchev, G. I. Guteneva, and R. S. Mukhanova, Russ. J. Ecol. 43 (2), 142 (2012). https://doi.org/10.1134/S1067413612020154

    Article  Google Scholar 

  11. A. Yu. Perevaryukha, Autom. Control Comput. Sci. 45, 223 (2011). https://doi.org/10.3103/S0146411611040067

    Article  Google Scholar 

  12. T. M. Delorey, C. G. K. Ziegler, G. Heimberg, et al., Nature 595, 107 (2021). https://doi.org/10.1038/s41586-021-03570-8

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. K. D. Lamb, M. M. Luka, M. Saathoff, R. Orton, et al., SARS-CoV-2’s evolutionary capacity is mostly driven by host antiviral molecules, Preprint Server for Biology: bioRxiv (2023). https://doi.org/10.1101/2023.04.07.536037

  14. C. R. Pothast, R. C. Dijkland, M. Thaler, et al., Elife 11, e82050 (2022). https://doi.org/10.7554/eLife.82050

  15. J. P. A. Ioannidis, S. Cripps, and M. A. Tanner, Int. J. Forecast. 38 (2), 423 (2022). https://doi.org/10.1016/j.ijforecast.2020.08.004

    Article  PubMed  Google Scholar 

  16. V. Chin, N. I. Samia, R. Marchant, et al., Eur. J. Epidemiol. 35, 733 (2020). https://doi.org/10.1007/s10654-020-00669-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. S. Moein, N. Nickaeen, A. Roointan, et al., Sci. Rep. 11, 4725 (2021). https://doi.org/10.1038/s41598-021-84055-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. A. V. Nikitina, I. A. Lyapunov, and E. A. Dudnikov, Comput. Math. Inf. Technol. 4 (1), 19 (2020). https://doi.org/10.23947/2587-8999-2020-1-1-19-30

    Article  Google Scholar 

  19. R. C. Barnard, N. G. Davies, et al., Nat. Commun. 13, 4879 (2022). https://doi.org/10.1038/s41467-022-32404-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. S. K. Ghosh and S. Ghosh, Sci. Rep. 13, 3610 (2023). https://doi.org/10.1038/s41598-023-30800-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. K. W. Ng, N. Faulkner, G. H. Cornish, et al., Science 370 (6522), 1339 (2020). https://doi.org/10.1126/science.abe1107

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. A. Yu. Perevaryukha, Cybern. Syst. Anal. 52 (4), 623 (2016). https://doi.org/10.1007/s10559-016-9864-8

    Article  MathSciNet  Google Scholar 

  23. G. E. Hutchinson, Ann. N. Y. Acad. Sci. 50 (4), 221 (1948). https://doi.org/10.1111/j.1749-6632.1948.tb39854.x

    Article  ADS  CAS  PubMed  Google Scholar 

  24. A. Yu. Kolesov and Yu. S. Kolesov, Tr. MIAN 199, 3 (1993). https://www.mathnet.ru/links/e56394c4bd5687 41eb07ea5ce73abf26/tm1373.pdf

  25. T. Yu. Borisova and A. Yu. Perevaryukha, Tech. Phys. Lett. 48 (7), 251 (2022). https://doi.org/10.1134/S1063785022090012

    Article  ADS  CAS  Google Scholar 

  26. N. Fabiano and S. N. Radenovic, Mil. Tech. Cour. 69 (1), 1 (2021).

    Google Scholar 

  27. A. V. Shabunin, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din. 30 (6), 717 (2022). https://doi.org/10.18500/0869-6632-003014

    Article  Google Scholar 

  28. M. S. A. Abotaleb and T. A. Makarovskikh, Bull. South Ural State Univ. Ser. Comput. Technol., Autom. Control, Radio Electron. 21 (3), 26 (2021). https://doi.org/10.14529/ctcr210303

    Article  Google Scholar 

  29. A. V. Zaikovskaya, A. V. Gladysheva, M. Yu. Kartashov, et al., Probl. Osobo Opasnykh Infekts., No. 1, 94 (2022). https://doi.org/10.21055/0370-1069-2022-1-94-100

  30. V. I. Vechorko, O. V. Averkov, and A. A. Zimin, Kasdiovaskulyar. Ter. Profil. 21 (6), 89 (2022). https://doi.org/10.15829/1728-8800-2022-3228

    Article  Google Scholar 

  31. S. J. R. da Silva, A. Kohl, L. Pena, and K. Pardee, Rev. Med. Virol. 33 (1), e2373 (2022). https://doi.org/10.1002/rmv.2373

  32. F. E. Juul, H. C. Jodal, I. Barua, et al., Scand. J. Public Health 50, 38 (2022). https://doi.org/10.1177/14034948211047137

    Article  PubMed  Google Scholar 

  33. N. Brusselaers, D. Steadson, K. Bjorklund, et al., Humanit. Soc. Sci. Commun. 9, 91 (2022). https://doi.org/10.1057/s41599-022-01097-5

    Article  Google Scholar 

  34. Ch. Phetsouphanh, D. R. Darley, D. B. Wilson, et al., Nat. Immunol. 23, 210 (2022). https://doi.org/10.1038/s41590-021-01113-x

    Article  CAS  PubMed  Google Scholar 

  35. H. Oshitani, Nature 605, 589 (2022). https://doi.org/10.1038/d41586-022-01385-9

    Article  ADS  CAS  PubMed  Google Scholar 

  36. L. Corey, C. Beyrer, M. S. Cohen, N. L. Michael, T. Bedford, and M. Rolland, N. Engl. J. Med. 385, 562 (2021). https://doi.org/10.1056/NEJMsb210475634347959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. E. L. Shrock, R. T. Timms, T. Kula, et al., Science 380 (6640), 798 (2023). https://doi.org/10.1126/science.adc9498

    Article  CAS  Google Scholar 

  38. P. V. Markov, M. Ghafari, M. Beer, et al., Nat. Rev. Microbiol. 21, 195 (2023). https://doi.org/10.1038/s41579-023-00878-2

    Article  CAS  Google Scholar 

  39. V. V. Mikhailov, A. Yu. Perevaryukha, and Yu. S. Reshetnikov, Inf.-Upravlyayushchie Sist., No. 4 (95), 31 (2018). https://doi.org/10.31799/1684-8853-2018-4-31-38

  40. J. O. Lloyd-Smith, S. J. Schreiber, P. E. Kopp, and W. M. Getz, Nature 438, 355 (2005). https://doi.org/10.1038/nature04153

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. V. V. Mikhailov, A. V. Spesivtsev, and A. Yu. Perevaryukha, Evaluation of the dynamics of phytomass in the tundra zone using a fuzzy-opportunity approach, in Intelligent Distributed Computing XIII. IDC 2019. Studies in Computational Intelligence, Ed. by I. Kotenko, C. Badica, V. Desnitsky, D. El Baz, and M. Ivanovic (Springer, Cham, 2020), vol. 868, p. 449. https://doi.org/10.1007/978-3-030-32258-8_53

    Book  Google Scholar 

  42. A. Yu. Perevaryukha, Tech. Phys. Lett. 49 (2), 14 (2023). https://doi.org/10.1134/S1063785023010054

    Article  ADS  CAS  Google Scholar 

  43. A. Yu. Perevaryukha, Biophysics 61 (2), 334 (2016). https://doi.org/10.1134/S0006350916020147

    Article  CAS  Google Scholar 

  44. A. Yu. Perevaryukha, Biophysics 66 (2), 327 (2021). https://doi.org/10.1134/S0006350921020160

    Article  CAS  PubMed  Google Scholar 

  45. A. Yu. Perevaryukha, Biophysics 66 (6), 974 (2021). https://doi.org/10.1134/S0006350921060130

    Article  CAS  PubMed  Google Scholar 

  46. A. Yu. Perevaryukha, Tech. Phys. 68 (2), 35 (2023). https://doi.org/10.1134/S106378422301005X

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed within the framework of the project “Theoretical and Technological Foundations of Digital Transformations of Society and Economy of Russia” of the St. Petersburg Federal Research Center of the Russian Academy of Sciences, grant no. FFZF-2022–0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Perevaryukha.

Ethics declarations

The author declares that she has no conflicts of interest.

Additional information

—For what purpose get your hopes up?

M.Yu. Lermontov, Hero of Our Time

Translated by M. Drozdova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevaryukha, A.Y. Scenario Modeling of Regional Epidemics of SARS-COV-2 and Analysis of Immunological Aspects of New Expected COVID Waves. Tech. Phys. 68, 205–217 (2023). https://doi.org/10.1134/S1063784223060038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223060038

Keywords:

Navigation