Skip to main content
Log in

Synthesis of Carbon Nanoparticles in a Compression Reactor in Atmosphere of Buffer Gases

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Physicochemical aspects of the gas-phase synthesis of nanopowders using a cyclic compression reactor are considered. Precursors (methane, ethylene, and acetylene) are compressed under conditions close to adiabatic ones in atmosphere of buffer monatomic gases (argon, helium, and neon). The effect of the pressure in the reactor and precursor/buffer gas volumetric ratio on the composition, morphology, and structure of carbon-containing particles (pyrolysis products) is studied. Complete pyrolysis is observed for all precursors but under different conditions. Thermal decomposition of methane, having the minimum enthalpy of formation, is observed in atmosphere with an argon content of 97.5% at a peak pressure of greater than 10 MPa. Helium shows limited possibilities for thermal relaxation under the conditions for fast reactions (<50 ms): only acetylene, having the maximum enthalpy of formation, is decomposed in the helium atmosphere. The solid reaction products represent black powders with a bulk density of 20–30 mg/cm3. The powders are studied using transmission and scanning electron microscopy, Raman scattering, and X-ray diffraction analysis. The particles represent either hollow or filled globular bulbous structures with a size of up to 100 nm. The X-ray diffraction analysis shows the presence of graphite-like crystallites with sizes of less than 10 nm in all samples. Raman analysis yields predominantly sp2 hybridization of carbon. The cyclic compression method provides wide opportunities for the pyrolysis of hydrocarbons aiming at the production of various carbon structures, which enables for the fine tuning in terms of the yield of carbon nanomaterials of the required morphology for practical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. N. Sano, H. Akazawa, T. Kikuchi, and T. Kanki, Carbon 41, 2159 (2003).

    Article  Google Scholar 

  2. D. W. Murphy, M. J. Rosseinsky, R. M. Fleming, R. Tycko, A. P. Ramirez, R. C. Haddon, T. Siegrist, G. Dabbagh, J. C. Tully, and R. E. Walstedt, J. Phys. Chem. Solids 53, 1321 (1992).

    Article  ADS  Google Scholar 

  3. H. Feng, L. Tang, G. Zeng, J. Tang, Y. Deng, M. Yan, Y. Liu, Y. Zhou, X. Ren, and S. Chen, J. Mater. Chem. A 6, 7310 (2018).

    Article  Google Scholar 

  4. Yu. D. Tretyakov and E. A. Goodilin, Russ. Chem. Rev. 78 (9), 801 (2009). https://doi.org/10.1070/RC2009v078n09ABEH004029

    Article  ADS  Google Scholar 

  5. J. Yan and B. R. Saunders, RSC Adv. 4, 43286 (2014).

    Article  ADS  Google Scholar 

  6. L. Zhang, Y. Wang, T. Xu, S. Zhu, and Y. Zhu, J. Mol. Catal. A: Chem. 331, 7 (2010).

    Article  Google Scholar 

  7. S. Saga, H. Matsumoto, K. Saito, M. Minagawa, and A. Tanioka, J. Power Sources 176, 16 (2008).

    Article  ADS  Google Scholar 

  8. A. V. Penkova, G. A. Polotskaya, A. M. Toikka, M.  Trchová, M. Šlouf, M. Urbanová, J. Brus, L. Brožová, and Z. Pientka, Macromol. Mater. Eng. 294, 432 (2009).

    Article  Google Scholar 

  9. R. Sijbesma, G. Srdanov, F. Wudl, J. A. Castoro, C. Wilkins, S. H. Friedman, D. L. DeCamp, and G. L. Kenyon, J. Am. Chem. Soc. 115, 6510 (1993).

    Article  Google Scholar 

  10. A. V. Penkova, S. F. A. Acquah, L. B. Piotrovskiy, D. A. Markelov, A. S. Semisalova, and H. W. Kroto, Russ. Chem. Rev. 86 (6), 530 (2017). https://doi.org/10.1070/RCR4712

    Article  ADS  Google Scholar 

  11. L. M. Viculis, J. J. Mack, and R. B. Kaner, Science 299, 1361 (2003).

    Article  Google Scholar 

  12. C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, J. Phys. Chem. B 108, 19912 (2004).

    Article  Google Scholar 

  13. S. Wang, P. K. Ang, Z. Wang, A. L. L. Tang, J. T. L. Thong, and K. P. Loh, Nano Lett. 10, 92 (2010).

    Article  ADS  Google Scholar 

  14. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Nature 487, 82 (2012).

    Article  ADS  Google Scholar 

  15. H. Chen, L. Zhang, M. Li, and G. Xie, Materials 13, 4590 (2020).

    Article  ADS  Google Scholar 

  16. B. Ezdin, Yu. Pakharukov, V. Kalyada, F. Shabiev, A. Zarvin, D. Yatsenko, R. Safargaliev, A. Ichshenko, and V. Volodin, Catal. Today 397–399, 249 (2021). https://doi.org/10.1016/j.cattod.2021.09.024

    Article  Google Scholar 

  17. S. Iijima, Nature 354, 56 (1991).

    Article  ADS  Google Scholar 

  18. A. V. Rode, S. T. Hyde, E. G. Gamaly, R. G. Elliman, D. R. McKenzie, and S. Bulcock, Appl. Phys. A 69, 755 (1999).

    Article  ADS  Google Scholar 

  19. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Chem. Phys. Lett. 243, 49 (1995).

    Article  ADS  Google Scholar 

  20. Y. Z. Jin, C. Gao, W. K. Hsu, Y. Zhu, A. Huczko, M. Bystrzejewski, M. Roe, C. Y. Lee, S. Acquah, H. Kroto, and D. R. M. Walton, Carbon 43, 1944 (2005).

    Article  Google Scholar 

  21. B. S. Ezdin, V. E. Fedorov, A. A. Nikiforov, A. E. Zarvin, I. V. Mishchenko, V. V. Kalyada, and M. D. Khodakov, “New compression reactor for hyperbaric hydrocarbon conversion,” in Nonequilibrium Processes in Plasma, Combustion and Atmosphere, Ed. by A. M. Starik and S. M. Frolov (Torus, Moscow, 2012), pp. 179–182.

    Google Scholar 

  22. B. S. Ezdin, V. V. Kalyada, D. A. Yatsenko, A. V. Ischenko, V. A. Volodin, and A. A. Shklyaev, Powder Technology 394, 996 (2021). https://doi.org/10.1016/j.powtec.2021.09.032

  23. Yu. V. Fedoseeva, K. M. Popov, G. A. Pozdnyakov, V. N. Yakovlev, B. V. Sen’kovskiy, L. G. Bulusheva, and A. V. Okotrub, J. Struct. Chem. 58, 1196 (2017).

    Article  Google Scholar 

  24. Y. Slotboom, S. Roosjen, A. Kronberg, M. Glushenkov, and S. R. A. Kersten, Chem. Eng. J. 414, 128821 (2021).

  25. A. Ashok, M. A. Katebah, P. Linke, D. Kumar, D. Arora, K. Fischer, T. Jacobs, and M. Al-Rawashdeh, Rev. Chem. Eng. (2021). https://doi.org/10.1515/revce-2020-0116

  26. A. A. Nikiforov, B. S. Ezdin, and M. Yu. Kuprikov, RF Patent No. 2640079 (2017).

  27. J. B. Mann, Atomic Structure Calculations. II. Hartree–Fock Wave Functions and Radial Expectation Values: Hydrogen to Lawrencium (Los Alamos Sci. Lab. Univ. California, Los Alamos, New Mexico, USA, 1968), LA-3691.

  28. M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, and R. Saito, Phys. Chem. Chem. Phys. 9, 1276 (2007).

    Article  Google Scholar 

  29. S. Tikhomirov and T. Kimstach, Analitika 1 (1), 28 (2011).

    Google Scholar 

  30. D. S. Knight and W. B. White, J. Mater. Res. 4, 385 (1989).

    Article  ADS  Google Scholar 

  31. L. G. Cancado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhaes-Paniago, and M. A. Pimenta, Appl. Phys. Lett. 88, 163106 (2006).

  32. K. B. Bogdanov, Candidate’s Dissertation in Mathematics and Physics (St. Petersburg, 2014). https://vak.minobrnauki.gov.ru/advert/174830

  33. É. A. Smorgonskaya, T. K. Zvonareva, E. I. Ivanova, I. I. Novak, and V. I. Ivanov-Omskii, Phys. Solid State 45 (9), 1658 (2003). https://doi.org/10.1134/1.1611229

    Article  ADS  Google Scholar 

  34. J. B. Wu, M. L. Lin, X. Cong, H. N. Liu, and P. H. Tan, Chem. Soc. Rev. 47, 1822 (2018).

    Article  Google Scholar 

  35. P. J. F. Harris, A. Burian, and S. Duber, Philos. Mag. Lett. 80, 381 (2000).

    Article  ADS  Google Scholar 

  36. P. J. F. Harris, Philos. Mag. 84, 3159 (2004).

    Article  ADS  Google Scholar 

  37. V. R. Galakhov, A. Buling, M. Neumann, N. A. Ovechkina, A. S. Shkvarin, A. S. Semenova, M. A. Uimin, A. Ye. Yermakov, E. Z. Kurmaev, O. Y. Vilkov, and D. W. Boukhvalov, J. Phys. Chem. C 115, 24615 (2011).

    Article  Google Scholar 

  38. T. Ungár, J. Gubicza, G. Trichy, C. Pantea, and T. W. Zerda, Composites, Part A 36 (4), 431 (2005).

    Article  Google Scholar 

  39. D. I. Sokolovskii, Candidate’s Dissertation in Mathematics and Physics (Yekaterinburg, 2019). https://vak.minobrnauki.gov.ru/advert/100047131

  40. H. Kuzmany, R. Pfeiffer, M. Hulman, and C. Kramberger, Philos. Trans.: Math., Phys. Eng. Sci. 362 (1824), 2375 (2004).

  41. V. I. Berezkin, Phys. Solid State 42, 580 (2000).

    Article  ADS  Google Scholar 

  42. M. Wojdyr, J. Appl. Cryst. 43, 1126 (2010).

    Article  Google Scholar 

  43. J. Meng, S. Li, and J. Niu, ACS Omega 4, 20762 (2019).

    Article  Google Scholar 

  44. Y. Xiong, L. Jin, H. Yang, Y. Li, and H. Hu, Fuel Process. Technol. 210, 106563 (2020).

Download references

ACKNOWLEDGMENTS

The experiments were performed using the equipment of core facility centers Applied Physics and VTAN of Novosibirsk State University.

Funding

The XRD study of the carbon nanomaterials was supported by the Ministry of Science and High Education of the Russian Federation (project no. 075-15-2020-797 (13.1902.21.0024)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vasiljev.

Ethics declarations

The authors declare that there is no conflict of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezdin, B., Vasiljev, S., Yatsenko, D. et al. Synthesis of Carbon Nanoparticles in a Compression Reactor in Atmosphere of Buffer Gases. Tech. Phys. 68, 18–26 (2023). https://doi.org/10.1134/S1063784223010024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223010024

Keywords:

Navigation