Skip to main content
Log in

Features of the Destruction of a Microjet of a Diluted Polymer Solution into Main and Satellite Microdrops under the Action of an External Vibrational Impact

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

An experimental study of the morphology of a laminar microjet flow of dilute aqueous solutions of sodium alginate with and without the addition of hydroxyethyl cellulose after a nozzle subjected to external vibration excitation from the action of the inverse piezoelectric effect was carried out. The influence of the polymer concentration in solution (0.5–5 mg/mL), liquid flow rate (4–26 mL/min), and external disturbance current frequency (0–1.2 kHz) on the capillary fragmentation of a microjet with a diameter of about 210 μm in the range of Onesorge numbers from 0.046 to 1.88 and Reynolds numbers from 0.7 to 470 was studied. The regimes of microjet flow and fragmentation into microdrops are identified, indicating the boundaries of transitions between them, and a general map of regimes is constructed. Taking into account the concentration of the polymer in the solution, the dependence of the length of destruction of the microjet on its velocity is shown. The conditions for monodisperse destruction of a microjet with an equidistant location of the main microdrops in the flow are established, which are related to the optimal balance between the molecular weight of the polymer in solution, the intensity of the external perturbation, and the stress relaxation time in polymer viscoelastic microjets. The role of the formation of “beads-on-string” structures in the capillary destruction of a microjet has been studied with the identification of cases of the absence of the formation of satellite microdrops from liquid filaments between the main microdroplets. The results obtained are of practical importance for applications based on air microhydrodynamics (bioengineering and additive technologies), which work based on heterogeneous fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. H. Wijshoff, Phys. Rep. 491, 77 (2010). https://doi.org/10.1016/j.physrep.2010.03.003

    Article  ADS  Google Scholar 

  2. D. Serp, E. Cantana, C. Heinzen, U. Von Stockar, and I. W. Marison, Biotechnol. Bioeng. 70, 41 (2000). https://doi.org/10.1002/1097-0290(20001005)

    Article  Google Scholar 

  3. C. W. Visser, T. Kamperman, P. L. Karbaat, D. Lohse, and M. Karperien, Sci. Adv. 4 (1), eaao1175 (2018). https://doi.org/10.1126/sciadv.aao1175

  4. M. Neukötter, S. Jesinghausen, and H.-J. Schmid, Rheol. Acta 61, 499 (2022). https://doi.org/10.1007/s00397-022-01339-y

    Article  Google Scholar 

  5. F. Del Giudice, S. J. Haward, and A. Q. Shen, J. Rheol. 61, 327 (2017). https://doi.org/10.1122/1.4975933

    Article  ADS  Google Scholar 

  6. D. Baumgartner, G. Brenn, and C. Planchette, Phys. Rev. Fluids 5, 103602 (2020). https://doi.org/10.1103/PhysRevFluids.5.103602

  7. Y. Christanti and L. M. Walker, J. Rheol. 46, 733 (2002). https://doi.org/10.1122/1.1463418

    Article  ADS  Google Scholar 

  8. N. Blanken, M. S. Saleem, M.-J. Thoraval, and C. Antonini, Curr. Opin. Colloid Interface Sci. 51, 101389 (2021). https://doi.org/10.1016/j.cocis.2020.09.002

  9. A. E. Ashikhmin, N. A. Khomutov, M. V. Piskunov, and V. A. Yanovsky, Appl. Sci. 10 (2), 685 (2020). https://doi.org/10.3390/app10020685

    Article  Google Scholar 

  10. M. Piskunov, A. Semyonova, N. Khomutov, A. Ashikhmin, and V. Yanovsky, Phys. Fluids 33 (8), 083309 (2021). https://doi.org/10.1063/5.0059079

  11. M. Piskunov, A. Semyonova, N. Khomutov, A. Ashikhmin, and V. Yanovsky, Int. J. Heat Mass Transfer 185, 122442 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2021.122442

  12. J. Eggers, Rev. Mod. Phys. 69, 865 (1997). https://doi.org/10.1103/RevModPhys.69.865

    Article  ADS  Google Scholar 

  13. A. H. Lefebvre and V. G. McDonell, Atomization and Sprays, 2nd ed. (CRC Press, Boca Raton, 2017). https://doi.org/10.1201/9781315120911

    Book  Google Scholar 

  14. W. T. Pimbley and H. C. Lee, IBM J. Res. Dev. 21, 21 (1977). https://doi.org/10.1147/rd.211.0021

    Article  Google Scholar 

  15. J. H. Hilbing and S. D. Heister, Phys. Fluids 8, 1574 (1996). https://doi.org/10.1063/1.868931

    Article  ADS  Google Scholar 

  16. A. U. Chen and O. A. Basaran, Phys. Fluids 14, L1 (2002). https://doi.org/10.1063/1.1427441

    Article  ADS  Google Scholar 

  17. U. Prüße, J. Dalluhn, J. Breford, and K.-D. Vorlop, Chem. Eng. Technol. 23, 1105 (2000). https://doi.org/10.1002/1521-4125(200012)23:12

    Article  Google Scholar 

  18. T. Kamperman, V. Trikalitis, M. Karperien, C.-W. Visser, and J. Leijten, ACS Appl. Mater. Interfaces 10, 23433 (2018). https://doi.org/10.1021/acsami.8b05227

    Article  Google Scholar 

  19. V. Nedović, V. Manojlović, U. Pruesse, B. Bugarski, J. Djonlagić, and K. Vorlop, Chem. Ind. Chem. Eng. Q. 12, 53 (2006). https://doi.org/10.2298/CICEQ0601053N

    Article  Google Scholar 

  20. D. Baumgartner, W. Bernard, B. Weigand, G. Lamanna, G. Brenn, and C. Planchette, J. Fluid Mech. 885, A23 (2020). https://doi.org/10.1017/jfm.2019.967

    Article  ADS  Google Scholar 

  21. D. Baumgartner, G. Brenn, and C. Planchette, Int. J. Multiphase Flow 150, 104012 (2022). https://doi.org/10.1016/j.ijmultiphaseflow.2022.104012

  22. D. Baumgartner, G. Brenn, and C. Planchette, J. Fluid Mech. 937, R1 (2022). https://doi.org/10.1017/jfm.2022.107

    Article  ADS  Google Scholar 

  23. C. Liu, T. Jin, W. Liu, W. Hao, L. Yan, and L. Zheng, LWT 148, 111770 (2021). https://doi.org/10.1016/j.lwt.2021.111770

  24. D. W. Bousfield, R. Keunings, G. Marrucci, and M. M. Denn, J. Non-Newtonian Fluid Mech. 21, 79 (1986).

  25. J. Li and M. A. Fontelos, Phys. Fluids 15, 922 (2003). https://doi.org/10.1063/1.1556291

    Article  ADS  Google Scholar 

  26. C. Clasen, J. Eggers, M. Fontelos, J. Li, and G. McKinley, J. Fluid Mech. 556, 283 (2006). https://doi.org/10.1017/S0022112006009633

    Article  ADS  Google Scholar 

  27. R. Sattler, S. Gier, J. Eggers, and C. Wagner, Phys. Fluids 24, 23101 (2012). https://doi.org/10.1063/1.3684750

    Article  Google Scholar 

  28. R. P. Mun, J. A. Byars, and D. V. Boger, J. Non-Newtonian Fluid Mech. 74, 285 (1998). https://doi.org/10.1016/S0377-0257(97)00074-8

Download references

Funding

The study was supported by a grant from the Russian Science Foundation (no. 22-29-20109, https://rscf.ru/ project/22-29-20109/) and funds from the Government of Tomsk oblast.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Piskunov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Drozdova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khomutov, N.A., Semyonova, A.E., Belonogov, M.V. et al. Features of the Destruction of a Microjet of a Diluted Polymer Solution into Main and Satellite Microdrops under the Action of an External Vibrational Impact. Tech. Phys. 67, 779–790 (2022). https://doi.org/10.1134/S1063784222110056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222110056

Keywords:

Navigation